- Aller	

Exide Recycling Center Final Cover System **Detailed Drainage Calculations**

DETAIL DRAINAGE CALCULATIONMade By:HHChecked by:JBFReviewed by:JBF	
--	--

1.0 OBJECTIVE

Golder has designed the final cover system for Cells 10 through 15 of the North CAMU at the closed Exide Frisco Recycling Center in Frisco, Texas. With this proposed design there is a need for drainage features. A perimeter drainage channel on the north that drains to the west and on the west that drains to the south have been proposed. This drainage channel will extend 436 feet to the south and discharge into an existing tributary that leads to Stewart Creek. A culvert at the proposed access road crossing is required. This culvert will allow flow to pass under the landfill access road and continue to the tributary.

2.0 METHOD

The rational method is used to calculate discharge flows in small areas. The estimated flows are used to size the drainage channel using the Manning's equation. The road crossing culvert(s) are sized with HY8 using the esimated flows.

3.0 CALCULATION

3.1 Discharge Flows

The rational method equation is used to calculate the peak discharge for facilities serving a drainage area less than 200 acres.

> O=ciA c = Rational runoff coefficient i = rainfall intensity (in/hour) A = drainage area (acres) Q = Peak discharge (cfs)

The runoff coefficient for a non-developed land is 0.30. The rainfall intensity is 7.6 in/hr. The runoff coefficient and time of concentration were taken from the Engineering Standards, The City of Frisco, Texas. The Tc is put into the TxDOT spreadsheet for calculating Rainfall Intensity-Duration-Frequency Coefficients for Texas Counties. The 25-year, 24-hour storm event is used to analyze the peak discharge. The drainage area is based on the final site conditions.

Pre Culve	ert	Post Culv	ert
c =	0.3	c =	0.3
i =	6.2 in/hr	i =	5.6 in/hr
A =	5.27 ac	A =	4.86 ac
Q =	10 cfs	Q =	8 cfs

C:\Users\jfassett\Documents\Projects\Exide\2018 Work\Copy of Exide Drainage Calc_08282018-Rev 1 Submitted: August 2015

and the second se	
	No. of Concession, Name

3.2 Channel Sizing

The Mannings equation is used to size the perimeter channel. Table 3, Channel Hydraulic Calculation, show the channel design geometry, velocity, and freeboard calculation.

3.3 Culvert Sizing

Using Hy-8 (version 7.3) from the Federal Highway Administration and the site data (discharge, tailwater, roadway, etc.) the culvert was sized to pass the peak flows without overtopping the roadway.

4.0 CONCLUSION

The ditch is designed to be grassed lined with a geometry of 2 feet deep and 1.5 feet wide with 4H:1V sideslopes.

The culvert size is 2-18" CMP culverts at 26 feet long. A 5 ft by 5 ft by 12 in deep riprap inlet and outlet pad is required.

5.0 REFERENCES

- 1) Engineering Standards, The City of Frisco, Texas. Version August 2017
- 2) Hy-8 Program (version 7.5) Build date: July 28, 2016
- 3) Rainfall Intensity Duration Frequency Coefficients for Texas Counties, Texas Department of Transprotation.
- 4) Atlas of Depth-Duration Frequency of Precipitation Annual Maxima for Texas-U.S. Geological Survey, TxDOT Implementation Report 5–1301–01–1

TABLE 1A COMPOSITE CURVE NUMBER CALCULATIONS

EXIDE RECYCLING CENTER EXIDE TECHNOLOGIES

Project Number: 1302086-02

Date:	8/28/18
By:	HH
Chkd:	
Apprvd:	JBF

Design Storm	Design Storm 25 -Year Reoccurance									
	2-Year	25 -Year	Storm							
Storm Duration	Depth	Depth	Distributio							
(hours)	(inches)	(inches)	n							
24	4.1	7.6	II							

				CN = 98	CN = 92	CN = 85					
Subbasin ID	Subbasin Area (ft ²)	Subbasin Area (acres)	Subbasin Area (sq mile)	CONCRETE - PAVED AREAS OR POND AREAS (acres)	DIRT ROADS - UNPAVED AREAS HERBACEOUS GRASS/BRUSH (acres)	LANDFILL FINAL COVER AREAS (acres)	Composite SCS Curve No.	S = <u>1000</u> - 10 CN	Unit Runoff Q (in)	Runoff Volume (ac-ft)	Runoff Volume (ft ³)
LANDFILL AREA											
1	229,561	5.27	0.0082			5.27	CN = 85	1.76	5.84	2.56	111,673
2	211,702	4.86	0.0076			4.86	CN = 85	1.76	5.84	2.36	102,985
Total:	441,263	10.13	0.02							4.93	214,657

TABLE 1B BASIN TIME OF CONCENTRATION CALCULATIONS

EXIDE RECYCLING CENTER EXCIDE TECHNOLOGIES Project Number: 1/1302086.0

By: H	Ц
Chkd: JE	3F
Apprvd: JE	3F

				1	Flow Segment 1					Flow Segment 2					Flow Segment 3									
	Composite	Total Lag (0.6*Tc)	Total Travel Time		Length				Radius (Channel Only)	Travel Time	Type of					Typical Hydraulic Radius (Channel Only)	Travel Time	Type of		Slope		(0	pical Hydraulic Radius Channel Only)	Travel Time
Subbasin ID	Curve Number	(min)	(min)	Flow	(ft)	(ft/ft)	Roug	hness Condition ⁽¹⁾	(ft)	(min)	Flow	(ft)	(ft/ft)	Roug	hness Condition ⁽¹⁾	(ft)	(min)	Flow	(ft)	(ft/ft)	Roughness Con	dition ⁽¹⁾	(ft)	(min)
LANDFILL AREA																								
	1 85	13.8	22.9	Sheet	221	0.032	F	Dense Grass		19.6	Shallow	10.5	0.250	U	Unpaved		0.0	Channel	736	0.016	G Grass-line	d	0.58	3.3
2	2 85	16.7	27.8	Sheet	300	0.034	F	Dense Grass		24.5	Shallow	274.0	0.034	U	Unpaved		1.5	Channel	436	0.017	G Grass-line	d	0.60	1.8
																								1
																								1
																								1
																								1
																								1
																								ı
																								ı
																								1
																								1
																								1
																								I
																								1

Notes:

1. Refer to Table 3 for Roughness Condition descriptions and Tc Coefficients.

Table 2 **Time of Concentration and Mannings Flow Coefficients**

TR-55 (1986)

Sheet Flow Travel time (SCS Upland Method)

$$T_{t} = \frac{0.007 (n' L)^{0.8}}{(P_{2})^{0.5} s^{0.4}}$$

Where: T_t = travel time (hr); n' = roughness coefficient; L = flow length (ft);

P₂ = 2-yr storm depth (inches); s = slope (ft/ft)

flow velocity = $L/(60T_t)$

Flow Type	Surface Type	roughness n	Surface Description	Short Description
2	А	0.011	Smooth surfaces (concrete, asphalt, gravel, bare soil)	Smooth
Flow	В	0.05	Fallow (no residue)	Fallow
	С	0.06	Cultivated soils: Residue cover <= 20%	Cover<20%
erland	D	0.17	Cultivated soils: Residue cover > 20%	Cover>20%
er	Е	0.15	Grass: Short grass prairie	Short Grass
Ś	F	0.24	Grass: Dense grasses	Dense Grass
et/	G	0.41	Grass: Bermuda grass	Bermuda Grass
F G H -		0.13	Range (natural)	Range
S	I	0.40	Woods: Light underbrush	Light woods
	J	0.80	Woods: Heavy underbrush	Heavy Woods

Shallow Concentrated Flow Velocity (SCS Upland Method) v = mS^{0.5} Where: v = ve

Where: v = velocity (fps); m = roughness coeffient; S = slope (ft/ft)

Flow Type	Surface Type	Roughness m	Surface Description	Short Description
llow nc.	Р	20.3282	Paved Surfaces	Paved
Shallo Conc Flow	U	16.1345	Unpaved Surfaces	Unpaved

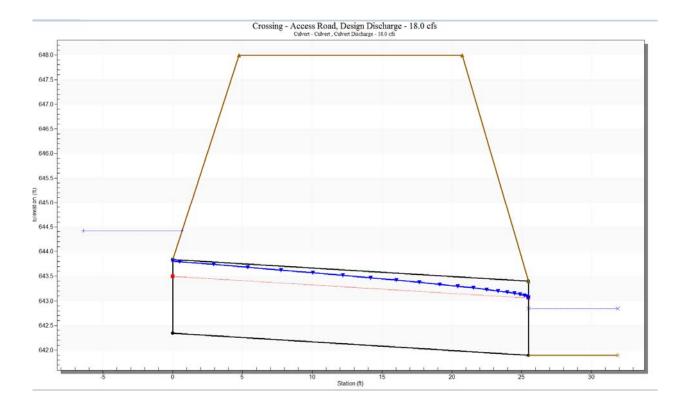
Channel Flow Velocity (Mannings Velocity)

v = 1.49/n Rh ^{2/3}	S ^{1/2}	Where: v = vel	ocity (fps); n = roughness coeffient; Rh = Hydraulic Rad	us (ft), S = slope	(ft/ft)
Lining Type	Mannings n for Depth	Mannings n for Velocity	Material	Maximum Velocity	Maximum Shear Stress
Α	0.026	0.026	ACB	25	
С	0.024	0.020	CSP	50	
Е	0.025	0.022	Earth-lined	3	
G	0.035	0.030	Grass-lined	5	
	0.017	0.013	Ductile Iron	50	
Р	0.012	0.009	Plastic	25	
R	0.040	0.035	Riprap	15	
Т	0.035	0.030	Turf Reinf.	10	1.5
Z	0.060	0.005	Other	25	

Table 3 **Channel Hydraulic Calculations**

Reach Designation Q (cfs) Perimeter Channels Channel Pre Culvert 10.0 Channel Post Culvert 8.0		1																	By: Chkd: Apprvd:	: JBF
Channels Channels 10.0			Char	nnel Desigi	n Geomet	ry			Channel Roughnes	s Parameters				Hy	draulic Calculat	tions			Channel	I Evaluations
Channel Pre Culvert 10.0	Storm Event	Approximate Channel Length (ft)		Left Side	Right	Bottom Width (ft)	Minimum Channel Depth (ft)		Design Channel Lining		Mannings 'n' for Stability (Velocity Calculation)	Maximum Velocity (ft/sec)	Maximum Normal Flow Depth (ft)	Froude	Normal Depth Shear Stress (Ib/ft ²)	Stream Power (W/m ²)	Top Width of Flow (ft)	Top Width of Channel (ft)		le Freeboard (ft)
Channel Post Culvert 8.0	25-year	776	0.0163	4.0	4.0	1.5	2.0	GL	Grass-lined	0.035	0.030	3.5	0.73	0.95	0.74	37.38	7.4	17.5	1.27	
	25-year	436	0.0100	4.0	4.0	1.5	2.0	GL	Grass-lined	0.035	0.030	2.7	0.74	0.74	0.46	18.23	7.4	17.5	1.26	
	-																			
	-																			-
																				1
												l								

(1) Note: Comments and Warnings: < 1.0 ft indicates freeboard is less than 1 foot.


< 1.0 ft indicates treetocatio is less than 1 root.</p>
< 12 Vol. Head indicates that the remaining freeboard is less than 1/2 the velocity head (V²/2g) suggesting water may splash out.
Warning: VxD-9 indicates that the velocity times the depth is greater than 9 ft²/sec, which is undesirable and may be unsafe.
Unstable V indicates that accutated velocity exceeds the recommended maximum for the lining material.
Unstable V indicates that calculated shear stress exceeds the recommended maximum for the lining material.

EXIDE RECYCLING CENTER HY-8 INFORMATION

lame: Access Road				Culvert	Add Culvert			
Parameter	Value	Units			Duplicate Culvert			
Discharge Method	Minimum, Design, and Maximum	·						
Minimum Flow	0.000	cfs			Delete Culvert			
Design Flow	18.000	cfs		Parameter	Value	1	Units	
Maximum Flow	20.000	cfs		Shape	Circular	-		
🕜 TAILWATER DATA				 Material 	Corrugated Steel	-		ir.
Channel Type	Trapezoidal Channel	·		Diameter	1.500	f	t	
Bottom Width	1.500	ft		C Embedment Depth	0.000	i	n	
Side Slope (H:V)	4.000	_:1		Manning's n	0.024			
Channel Slope	0.0170	ft/ft		Culvert Type	Straight	-		
Manning's n (channel)	0.035		Ξ	Inlet Configuration	Thin Edge Projecting	• •		
Channel Invert Elevation	641.900	ft		Inlet Depression?	No	-		
Rating Curve	View			SITE DATA		_		18
🕜 ROADWAY DATA				Site Data Input Option	Culvert Invert Data	-		
Roadway Profile Shape	Constant Roadway Elevation	·		Inlet Station	0.000	f	t	
First Roadway Station	0.000	ft		Inlet Elevation	642.340	f	t	
Crest Length	56.000	ft		Outlet Station	25.500	f	t	
Crest Elevation	648.000	ft		Outlet Elevation	641.900	f	t	
Roadway Surface	Paved	·		Number of Barrels	2			
Top Width	16.000	ft	-			-		i.

Summary	of Flows a	t Crossing -	- Access Ro	ad			
Headwater Elevation (ft)	Total Discharge (cfs)	Culvert Discharge (cfs)	Roadway Discharge (cfs)	Iterations			
642.34	0.00	0.00	0.00	1			
642.84	2.00	2.00	0.00	1			
643.07	4.00	4.00	0.00	1			
643.26	6.00	6.00	0.00	1			
643.44	8.00	8.00	0.00	1			
643.72	10.00	10.00	0.00	1			
643.88	12.00	12.00	0.00	1			
644.03	14.00	14.00	0.00	1			
644.20	16.00	16.00	0.00	1			
644.30	17.00	17.00	0.00	1			
644.78	20.00	20.00	0.00	1			
648.00	35.74	35.74	0.00	Overtopping			
Display					Geometry		Plot
Crossin	g Summary T	Table			Inlet Elevation:	642.34 ft	Crossing Rating Curve
Culvert	Summary Ta	bl Culver	t		Outlet Elevation:	641.90 ft	
-	, Surface Profil				Culvert Length:	25.50 ft	Culvert Performance Curve
-		05			Culvert Slope :	0.0173	Selected Water Profile
	d Inlet Table				Inlet Crest:	0.00 ft	Water Surface Profile Data
Custom	ized Table	Opti	ons		Inlet Throat:	0.00 ft	Water Surface Profile Data
					Outlet Control:	Profiles	

EXIDE RECYCLING CENTER HY-8 INFORMATION

Rainfall Intensity-Duration-Frequency Coefficients for Texas Counties

1. Select your count	ty. 2. Enter the time of	f concentrat	on				
County	Coefficient	2-year	5-year	10-year	25-year	50-year	100-year
Collin	e (in)	0.790	0.781	0.778	0.779	0.776	0.764
Clay	- b	54	67	79	92	102	106
Cochran Coke	d (mins)	8.2	8.8	8.8	8.8	8.8	8.2
Coleman	Intensity (in/hr)*	3.6	4.5	5.4	6.2	7.0	7.7
Collin							
Collingsworth Colorado	Coefficient	2-year	5-year	10-year	25-year	50-year	100-year
Comal	e (mm)	0.790	0.781	0.778	0.779	0.776	0.764
Comanche	b	1372	1702	2007	2337	2591	2692
	d (mins)	8.2	8.8	8.8	8.8	8.8	8.2
	Intensity (mm/hr)*	90.8	114.4	136.3	158.2	177.3	194.8

* for time of Concentration =

22.9 mins

Rainfall Intensity-Duration-Frequency Coefficients for Texas Counties

y. 2. Enter the time of	f concentrat	ion				
Coefficient	2-year	5-year	10-year	25-year	50-year	100-year
e (in)	0.790	0.781	0.778	0.779	0.776	0.764
b	54	67	79	92	102	106
d (mins)	8.2	8.8	8.8	8.8	8.8	8.2
Intensity (in/hr)*	3.2	4.0	4.8	5.6	6.2	6.8
Coefficient	2-year	5-year	10-year	25-year	50-year	100-year
e (mm)	0.790	0.781	0.778	0.779	0.776	0.764
b	1372	1702	2007	2337	2591	2692
d (mins)	8.2	8.8	8.8	8.8	8.8	8.2
Intensity (mm/hr)*	80.7	102.1	121.7	141.2	158.2	173.9
	Coefficiente (in)bd (mins)Intensity (in/hr)*Coefficiente (mm)bd (mins)	Coefficient 2-year e (in) 0.790 b 54 d (mins) 8.2 Intensity (in/hr)* 3.2 Coefficient 2-year e (mm) 0.790 b 1372 d (mins) 8.2	e (in) 0.790 0.781 b 54 67 d (mins) 8.2 8.8 Intensity (in/hr)* 3.2 4.0 Coefficient 2-year 5-year e (mm) 0.790 0.781 b 1372 1702 d (mins) 8.2 8.8	Coefficient 2-year 5-year 10-year e (in) 0.790 0.781 0.778 b 54 67 79 d (mins) 8.2 8.8 8.8 Intensity (in/hr)* 3.2 4.0 4.8 Coefficient 2-year 5-year 10-year e (mm) 0.790 0.781 0.778 b 1372 1702 2007 d (mins) 8.2 8.8 8.8	Coefficient 2-year 5-year 10-year 25-year e (in) 0.790 0.781 0.778 0.779 b 54 67 79 92 d (mins) 8.2 8.8 8.8 8.8 Intensity (in/hr)* 3.2 4.0 4.8 5.6 Coefficient 2-year 5-year 10-year 25-year e (mm) 0.790 0.781 0.778 0.779 b 1372 1702 2007 2337 d (mins) 8.2 8.8 8.8 8.8	Coefficient 2-year 5-year 10-year 25-year 50-year e (in) 0.790 0.781 0.778 0.779 0.776 b 54 67 79 92 102 d (mins) 8.2 8.8 8.8 8.8 8.8 Intensity (in/hr)* 3.2 4.0 4.8 5.6 6.2 Coefficient 2-year 5-year 10-year 25-year 50-year e (mm) 0.790 0.781 0.778 0.779 0.776 b 1372 1702 2007 2337 2591 d (mins) 8.2 8.8 8.8 8.8

* for time of Concentration =

27.9 mins

and the second

Exide Recycling Center Final Cover System Erosion Soil Loss

FINAL COVER EROSION SOIL LOSS CALCULATION - North CAMU	Made By: Checked by: Reviewed by:	CMF JBF
	Date:	5/30/2019

1.0 OBJECTIVE:

Estimate erosion soil loss under final closure conditions for the Class 2 Landfill (CL2LF) CAMU at the closed Exide Recycling Canter in Frisco, Texas.

2.0 METHOD:

Erosion loss was determined using the Revised Universal Soil Loss Equation (RUSLE), (UDSA, 1997).

I)

Use revised universal soil loss equation. **A = R K L S C P** Variables described below

Rainfall and erosivity index (R)

From Fig. 1, Ref.1, the average annual rainfall erosion index for the site is approx. **295**

Soil Erodibility Factor (K)

Assume a silty clay loam with an organic matter content of 4% and use Table 1, Ref. 1, to determine the K factor.

Use K = 0.26

Cover and Management Factor [C] Assume 80% ground cover and interpolate C from values shown on Table 2, Ref. 1 C = 0.013

Support Practice Factor (P)

Surface tracked with dozer -- rough surface Use P = 1

Length Slope Factor (LS) (Ref. 2)

For regular slopes > 15 ft long, the **Slope Steepness Factor**, **S** = $S = 10.8 \sin \Theta + 0.03$; $\sin \Theta < 0.09$ Eqn. 8.39

or 16.8 sin Θ - 0.50; sin $\Theta \ge 0.09$ Eqn. 8.40

Where: Θ = slope angle

Length Factor, L

 $L = [\lambda/72.6]^m$ Eqn. 8.43

 λ = slope length (measured as the horizontal projection of plot length) m is an exponent dependent upon slope given by

GOLDER ASSOCIATES INC. TEXAS REGISTRATION F-2578

$$m = \frac{\beta}{1+\beta}$$
 Eqn. 8.44

 β for soils moderately susceptible to erosion is given by:

$$\beta_{\rm mod} = \frac{11.16\sin\Theta}{3.0(\sin\Theta)^{0.8} + 0.56}$$
 Eqn. 8.45

 β is modified as follows for soils of low and high susceptibility to erosion:

 $\beta_{\text{low}} = (1/2)\beta_{\text{mod}}$ $\beta_{\text{high}} = 2\beta_{\text{mod}}$

3.0 ASSUMPTIONS:

Facility slopes are 4H:1V on the sides, 3.2% on top,

R was taken from Figure 1, Average Annual Values of the Rainfall Erosion Index,

K was taken from the USDA soil Interpretation Records, Soil Conservation Services,

S = slope steepness factor (Haan, 1994),

There are three equations available to determine S. If the length of the applicable slope is less than 15 feet, then equation 8.41 which is S = $3.0 (\sin \theta)^{0.8} + 0.56$. If the applicable slope is greater than 15 feet then equation 8.39 or 8.40 would apply, depending on the angle of the slope. These two equations are:

If $\sin \Theta < 0.09$, then S = 10.8 $\sin \Theta + 0.03$ If $\sin \Theta \ge 0.09$, then S = 16.8 $\sin \Theta - 0.50$

In our specific calculation, the slope angles are as follows:

For the 4 (H): 1(V) slope, Θ = 14.04° sin 14.04° = 0.24 ≥ 0.09, Use eq. 8.40

For the 3.2% slope, θ = 2.29° sin 2.29° = 0.03 < 0.09, Use eq. 8.39

L = slope length factor

 $L = \frac{\lambda}{72.6}^{m}$

where

$$m = \frac{\beta}{1+\beta}$$

 λ = horizontal projection of plot length

$$\beta = rill \ erosion$$

GOLDER ASSOCIATES INC. TEXAS REGISTRATION F-2578

 $\beta_{mod} = \frac{11.16\sin\Theta}{3.0(\sin\theta)^{0.8} + 0.56}$

The equation for rill erosion applies to moderately erodible soils. **C** represents 80% ground cover without appreciable canopy - Table 2, USDA-SCS TR 52, **P** was assumed to be 1.0 for long-range prediction & no maintenance.

4.0 CALCULATIONS

A RUSLE calculation was performed for a compound slopes.

A Summary of the RUSLE calculation is presented in Table 1.

5.0 CONCLUSION/RESULTS

RUSLE calculation for a compound slope is found in Tables 1. Annual erosion is calculated to be 0.7 ton/ac/year.

6.0 REFERENCES:

- 1) Use of the Universal Soil Loss Equation in Final Cover/Configuration Design, Procedural Handbook," TNRCC, Permits Section, October 1993.
- 2) Haan C.T., B. J. Barfield, and J.C. Hayes. 1994. Design hydrology and sedimentology for small catchments. San Diego CA : Academic Press Inc.
- TCEQ Regulatory Guidance, "Guidelines for Preparing a Surface Water Drainage Report for a Municipal Solid Waste Facility.", August 2006

GOLDER ASSOCIATES INC. TEXAS REGISTRATION F-2578

TABLE 1. EXIDE RECYCLING CENTER - ESTIMATED AVERAGE ANNUAL EROSIONMAXIMUM EROSION LOSS

R		K	Slope	Length (l)	rill susceptability	beta	m	LS	С	Р	A _i
ft tonsf in/acre hr year	Slope Segment	ton*ac-hr/hundredths ac- ft*tonf*in	(ft/ft)	(ft)	low, mod, high	eq. 8.45	eq.8.44 or .5 (Foster & Wischmeier, 1978)				ton/ac/yr
Final Cover - Top (80% cover)											
295	1	0.26	0.03	221	mod	0.475	0.3222	0.513	0.013	1.00	0.5
295	2	0.26	0.25	10.5	mod	1.774	0.6395	0.235	0.013	1.00	0.2
								Eff. LS: 0.75			0.7

NOTES: R was taken from Figure 1, Average Annual Values of the Rainfall Erosion Index

1

K was based on soil survey descriptions obtained from the USDA, Soil Interpretation Records, Soil Conservation Services

LS was calculated from Eqs. 8.39-41 and 43 (p. 261) - Design Hydrology and Sedimentology for Small Catchments

M was calculated from Eq. 8.37 (p. 256) - Design Hydrology and Sedimentology for Small Catchments

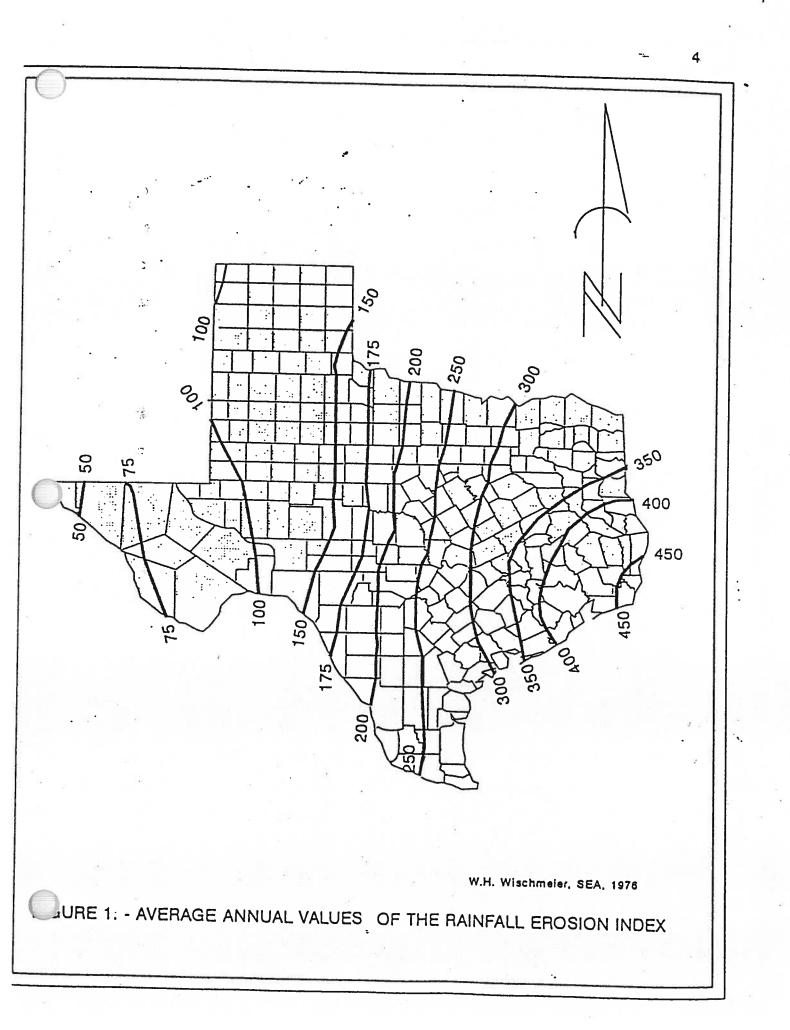
C represents 80% ground cover without appreciable canopy - USDA-SCS TR 51

 ${\bf P}$ was assumed to be 1.0 for long-range prediction & no maintenance

 $\mathbf{A} = \mathbf{R} * \mathbf{K} * \mathbf{LS} * \mathbf{C} * \mathbf{P}$

where:

A = soil loss, tons/(acre - year)


 \mathbf{R} = rainfall erosion index

 \mathbf{K} = soil erodibility factor

LS = slope length and steepness factor

 \mathbf{C} = vegetative cover factor

 \mathbf{P} = erosion control practice factor

TNRCC

Table 1 Approximate Values of Factor K for USDA Textural Classes

9			
		Organic Matter Conte	nt
Texture Class	<0.5%	2%	4%
and a second sec	K	K	K
Sand	0.05	0.03	0.02
Fine Sand	0.16	0.14	0.10
Very Fine Sand	0.42	0.36	0.28
Loamy Sand	0.12	0.10	0.08
Loamy Fine Sand	0.24	0.20	0.16
Loamy Very Fine Sand	0.44	0.38	0.30
Sandy Loam	0.27	0.24	0.19
Fine Sandy Loam	0.35	0.30	0.24
Very Fine Sandy Loam	0.47	0.41	0.33
Loam	0.38	0.32	0.29
Silt Loam	0.48	0.42	0.33
Silt	0.60	0.52	0.42
Sandy Clay Loam	0.27	0.25	0.21
Clay Loam	0.28	0.25	0.21
Silty Clay Loam	0.37	0.32	0.26
Sandy Clay	0.14	0.13	0.12
Silty Clay	0.25	0.23	
Clay		0.13 - 0.29	0.19

TABLE 1

The values shown are estimated averages of broad ranges of specific-soil values. When a texture is near the borderline of two texture classes, use the average of the two K values.

6

TNRCC

Vegetative Ca	nopy	Cover that contacts the soil surface											
Type and	Percent	Percent ground cover											
height ²	cover ³	0	20	40	60	70	80	90					
No Appreciable Canopy		0.45	0.20	0.10	0.042	.028	0.013	0.006					
Tall weeds or	4.4.30	- • •											
short brush with average drop	50	0.26	0.13	0.07	0.035	.023	0.012	0.006					
fall height of 20 in.	75	0.17	0.10	0.06	0.032	.022	0.011	0.005					

Table 2	Factor C	for permanent	pasture, ra	nge, and idle land	p.
---------	----------	---------------	-------------	--------------------	----

Extracted from:

United States Department of Agriculture, AGRICULTURE HANDBOOK NUMBER 537

- ¹ The listed C values assume that the vegetation and mulch are randomly distributed over the entire area.
- ² Canopy height is measured as the average fall height of water drops falling from the canopy to the ground. Canopy effect is inversely proportional to drop fall height and is negligible if fall height exceeds 33 ft.
- ³ Portions of total-area surface that would be hidden from view by canopy in a vertical projection (a bird'seye view).

The impact of changes in saturated hydraulic conductivity on the K factor must be accounted for by the nomograph in Fig. 8.9. To accomplish this correction using Eq. (8.38), relationships between hydraulic conductivity and permeability classes used in Fig. 8.9 must be known. Rawls *et al.* (1982) proposed the relationship shown in Table 8.3.

Example Problem 8.4. Effects of rock fragments on K

A silty clay loam soil is classified as permeability class 5. Based on textural information, soil structure, and a permeability class of 5, K is estimated as 0.21 in English units. What would be the value for K as corrected for rock fragments if the percentage of rock fragments greater than 2 mm occupies 40% of the soil mass by weight?

Solution:

1. Impact of rock fragment on hydraulic conductivity. From Table 8.3, k_f for a silty clay loam soil is between 0.04 and 0.08 in./hr. Assume a value of 0.06 in./hr. From Eq. (8.38)

$$k_{\rm r} = k_{\rm f}(1 - R_{\rm w}) = 0.06(1 - 0.40) = 0.036$$
 in./hr.

2. Estimating the revised permeability class. From Table 8.3, the permeability class for $k_b = 0.036$ in./hr is 6.

3. Estimating the new-erodibility. Entering Fig. 8.9 with an estimated K of 0.21 for a permeability class of 5, the K value for a class 6 permeability is estimated as 0.22 (English units).

It is again important to note that this procedure corrects only for the effects of rock fragments on infiltration. Impacts on the C factor must be based on percentage ground cover, as discussed in a subsequent section.

Rough Estimates of K from Textural Information and Experimental Values for Construction and Mined Sites

The USDA-SCS has developed estimates of K based on textural classification for topsoil, subsoil, and residual materials as shown in Table 8.4. These values are first estimates only and do not include the influence of soil structure or infiltration characteristics.

A limited number of data sets have been developed for drastically disturbed lands and for reconstructed soils. A summary of the data is given in Table 8.5 along with a comparison to values from the Wischmeier *et al.* (1971) nomograph shown in Fig. 8.9. The comparison is sufficiently favorable to warrant the use of the nomograph for a first estimate of K on disturbed topsoil or A-horizon material. The comparison is not favorable for subsoil materials.

Length and Slope Factors L and S

The effects of topography on soil erosion are determined by dimensionless L and S factors, which account for both rill and interrill erosion impacts.

Slope Steepness Factor S

The slope steepness factor S is used to predict the effect of slope gradient on soil loss. For slope lengths

Toble 8.3Soil Water Data for the Major USDA Soil Textural Classes(after Rawls et al., 1982)

	Demochility	Saturated h conduct	Hydrologic soil	
Texture	Permeability class ^a	in./hr	mm/hr	group ^b
Silty clay, clay	6	< 0.04	<1	D
Silty clay loam, sandy clay	5	0.04-0.08	1–2	C–D
Sandy clay loam, clay loam	4	0.08-0.20	25	С
Loam, silt loam	3	0.20-0.80	5–20	В
Loamy sand, sandy loam	2	0.80-2.40	20–60	A
Sand	1	> 2.40	>60	A+

^aSee Soil Conservation Service National Soils Handbook (SCS, 1983).

^bSee Soil Conservation Service National Engineering Handbook (SCS, 1972, 1984).

Note: Although the silt texture is missing from the NEH because of inadequate data, it undoubtedly should be in permeability class 3.

greater than 15 ft, the S factor from the USLE was modified significantly by McCool *et al.* (1987, 1993) after extensive evaluation of the original USLE data base. The modified version is

 $S = 10.8 \sin \theta + 0.03; \quad \sin \theta < 0.09$ (8.39)

$$S = 16.8 \sin \theta - 0.50; \quad \sin \theta \ge 0.09, \quad (8.40)$$

where θ is the slope angle. Based on an evaluation of

Table 8.4K Value Estimates based on Textural Information(English Units) (Soil Conservation Service, 1978)

Texture	Estimated K value
Topsoil	
Clay, clay loam, loam, silty clay	0.32 ^b
Fine sandy loam, loamy very fine sand, sandy loam	0.24
Loamy fine sand, loamy sand	0.17
Sand	0.15
Silt loam, silty clay loam, very fine sandy loam	0.37
Subsoil and Residual Material	
Outwash Soils	
Sand	0.17
Loamy sand	0.24
Sandy loam	0.43
Gravel, fine to moderate fine	0.24
Gravel, medium to moderate coarse	0.49
Lacrustrine Soils	
Silt loam and very fine sandy loam	0.37
Silty clay loam	0.28
Clay and silty clay	0.28
Glacial Till	
Loam, fine to moderate fine subsoil	0.32
Loam, medium subsoil	0.37
Clay loam	0.32
Clay and silty clay	0.28
Loess	0.37
Residual	
Sandstone	0.49
Siltstone, nonchannery	0.43
Siltstone, channery	0.32
Acid clay shale	0.28
Calcareous clay shale or limestone residuum	0.24

^aThese values are typical based only on textural information. Values for an actual soil can be considerably different due to different structure and infiltration.

^bUnits on K in this table are English units (tons•acre•hr/hundreds• acre•ft•tonsf•in.). To convert to metric units (t•ha•h/ha•MJ•mm), multiply K values by 0.1317.

data from disturbed lands with slopes up to 84%, McIssac *et al.* (1987) developed an equation similar to (8.39) and (8.40) with exponents in the same range; thus McCool *et al.* (1993) recommend that Eqs. (8.39) and (8.40) also be used for disturbed lands.

For slope lengths less than 15 ft, the S factor is not as strongly related to slope (slope exponent less than 1.0) since rilling would not have been initiated. The recommended factor is

$$S = 3.0(\sin\theta)^{0.8} + 0.56.$$
 (8.41)

Under conditions where thawing of recently tilled soils is occurring and surface runoff is the primary factor causing erosion (typical of the Pacific Northwest in the spring), the S factor should be (McCool *et al.*, 1987, 1993)

$$S = 4.25(\sin \theta)^{0.6}, \quad \sin \theta \ge 0.09.$$
 (8.42)

For thawing soils with slopes less than 9%, Eq. (8.39) should be used.

The S factor in the RUSLE is significantly modified from the original USLE as a result of an extensive reevaluation of the original data base, addition of the factors for short slope lengths, and new values for thawing soils (McCool *et al.*, 1987). The original data base did not include values beyond 20%. When using the quadratic form of the equation for S developed for the original USLE, projections beyond 20% yielded unreasonably high values for erosion. The RUSLE equation with the linear function corrects this problem.

Slope Length Factor

The slope length factor was developed by McCool *et al.* (1989, 1993) from the original USLE data base augmented with theoretical considerations. The L factor retains its original form

$$L = \left[\frac{\lambda}{72.6}\right]^m, \tag{8.43}$$

where λ is the slope length in feet, 72.6 ft is the length of a standard erosion plot, and *m* is a variable slope length exponent. Slope length, λ , is the horizontal projection of plot length, not the length measured along the slope. The difference in horizontal projections and slope lengths becomes important on steeper slopes.

The slope length exponent is related to the ratio of rill to interrill erosion, β (Foster *et al.*, 1977b; McCool *et al.*, 1989, 1993), by

$$m = \frac{\beta}{1+\beta}.$$
 (8.44)

Reclaimed soil or residual material	Location of experimental site	<i>K</i> Exp ^a /Nomo ^b	Reference
Hosmer silt loam	Indiana	0.387/0.485 ^c	Stein et al. (1983)
Alfred silt loam	Southern Indiana	0.812/0.485	
Ava silt loam	Southern Indiana	0.842/0.478	
Graded overburden	Southern Indiana	0.197-0.835/	
Graded of the motion		0.250-0.478	
Clinton silt loam ^d	Western Illinois	0.370/0.360	Mitchell et al. (1983)
Tama silty clay loam ^d	Westem Illinois	0.210/0.310	
Hosmer silt loam ^d	Southern Indiana	0.450-0.650/	
		0.470	
Sadler silt loam (A horizon)	Western Kentucky	0.415/0.385	Barfield et al. (1988)
Sadler silt loam (B horizon)	Western Kentucky	0.380/0.640	
Shale spoil material	Western Kentucky	0.140/0.180	

 Table 8.5
 Experimental K Value Estimates for Disturbed Lands (English Units)

"Values measured experimentally with rainfall simulators.

^bValues calculated from Wischmeier et al. (1971) nomograph shown in Fig. 8.9.

Values in English units of tons•acre•hr/hundreds•acre•ft•tonsf•in. To convert to metric units of t•a•h/ha•MJ•mm, multiply by 0.1317.

^dThe dominant soil series. Some mixing occurred with other series.

For soils that are classed as being moderately susceptible to erosion, McCool et al. (1989) proposed that

$$\beta_{\rm mod} = \frac{11.16\sin\theta}{3.0(\sin\theta)^{0.8} + 0.56}, \qquad (8.45)$$

where θ is the slope angle. Thus, the slope exponent is a function of the slope angle θ .

Soils in the RUSLE are classed as having low, moderate, or high susceptibility to rill erosion. Equation (8.45) is for soils that are moderately susceptible to erosion. Conversions for soils that have low or high susceptibility to erosion are given in Table 8.6. Values in Table 8.6 are based on the assumption that moderately erodible soils have a β defined by Eq. (8.45), soils highly susceptible to rilling have a β that is twice that given by Eq. (8.45), and soils with low susceptibility to rilling have a β that is defined by half that given by Eq. (8.45).

For soils in the Pacific Northwest, or other soils that are exposed to runoff during thawing without sufficient rainfall energy to cause interrill erosion, the values in Table 8.6 should not be used. Instead, McCool *et al.* (1989) recommend that a slope length exponent of 0.5 be used for all slopes. When runoff on thawing soils is exposed to rainfall sufficient to cause significant interrill erosion, the slope length exponent for the low rill to interrill erosion ratio should be used (column 1 in Table 8.6). For rangeland soils, the use of a low rill to interrill erosion ratio is proposed. Selection of the appropriate column to use in Table 8.6 requires professional judgement. The assistance of a soil scientist may be helpful.

Combined Length and Slope Factors

Combined slope length and slope steepness factors were calculated using the factors from Eqs. (8.39) to (8.43). These combination factors are given in Fig. 8.13 for all susceptibilities and for thawing soils.

Irregular and Segmented Slopes

Soil loss is strongly impacted by slope shape (Foster and Huggins, 1979). A convex shape will have greater erosion than a uniform slope by as much as 30%. A concave slope will have less erosion than a uniform slope. Foster and Wischmeier (1974) developed a procedure for evaluating the impact of irregular slopes by dividing the slope into segments. The soil loss per unit area from the *i*th segment is

$$A_{i} = RK_{i}C_{i}P_{i}S_{i}\left[\frac{\lambda_{i}^{m+1} - \lambda_{i-1}^{m+1}}{(\lambda_{i} - \lambda_{i-1})72.6^{m}}\right], \quad (8.46)$$

where λ_i and λ_{i-1} are the slope lengths at the start and end of segment *i*, and K_i , C_i , P_i , and S_i are USLE factors for segment *i*. Equation (8.46) can be used for each segment *i*. The total erosion from each segment **Table 8.6** Slope Length Exponent m in Eq. (8.43) (after McCool *et al.*, 1993)^{*a*}

Descenter	Rill/interrill ratio			
Percentage slope	Low ^b	Moderatec	High ^d	
0.2	0.02	0.04	0.07	
0.5	0.04	0.08	0.16	
1.0	0.08	0.15	0.26	
2.0	0.14	0.24	0.39	
3.0	0.18	0.31	0.47	
4.0	0.22	0.36	0.53	
5.0	0.25	0.40	0.57	
6.0	0.28	0.43	0.60	
8.0	0.32	0.48	0.65	
10.0	0.35	0.52	0.68	
12.0	0.37	0.55	0.71	
14.0	0.40	0.57	0.72	
16.0	0.41	0.59	0.74	
20.0	0.44	0.61	0.76	
25.0	0.47	0.64	0.78	
30.0	0.49	0.66	0.79	
40.0	0.52	0.68	0.81	
50.0	0.54	0.70	0.82	
60.0	0.55	0.71	0.83	

^aValues in table are not applicable to thawing soils. See text for explanation.

 ${}^{b}\beta = 1/2$ value from Eq. (8.45) in Eq. (8.44).

 ${}^{c}\beta = 1 \times \text{value from Eq. (8.45) in Eq. (8.44).}$

 ${}^{d}\beta = 2 \times \text{value from Eq. (8.45) in Eq. (8.44).}$

would be $A_i(\lambda_i - \lambda_{i-1})$, and the average erosion per unit area over the entire slope length would be

$$A = R \sum_{i=1}^{n} K_i C_i P_i S_i \frac{\left[\lambda_i^{m+1} - \lambda_{i-1}^{m+1}\right]}{\lambda_e 72.6^m}, \quad (8.47)$$

where λ_e is the total slope length. Equation (8.47) can also be used to evaluate the effects of variation in K, C, and P over the slope length.

An alternate method for evaluating irregular slopes is the use of a slope length adjustment factor (SAF). If the slope is divided into n increments of equal length ΔX , then

$$A = R \sum_{i=1}^{n} K_i C_i P_i S_i \frac{\left[(i \Delta X)^{m+1} - ([i-1] \Delta X)^{m+1} \right]}{n \Delta X 72.6^m}$$
(8.48)

Dividing by *n* times the soil loss from a uniform slope of equal length and assuming constant values of K_i C_i P_i along the slope, a slope adjustment factor can be developed for each segment, or

$$SAF_i = \frac{A_i}{A} = \frac{i^{m+1} - (i-1)^{m+1}}{n^m},$$
 (8.49)

where n is the number of segments and SAF is the slope adjustment factor. The sum of the SAF_i for a given slope is equal to the number of segments n; thus the average erosion over the slope is

$$A = \frac{R}{n} \sum_{i=1}^{n} K_i C_i P_i S_i L_i (SAF)_i. \qquad (8.50a)$$

where L_i is the slope length factor calculated from Eq. (8.43) using the *m* value corresponding to the segment steepness. In the development of a SAF relationship, *R*, *K*, *C*, and *P* remain constant over all segments; thus Eq. (8.50a) can be solved for an equivalent *LS* factor

$$LS = \frac{1}{n} \sum_{i=1}^{n} S_i L_i (SAF)_i.$$
 (8.50b)

Factors calculated from Eq. (8.50b) are given in Table 8.7. An example of its use is given in Example Problem 8.5.

Example Problem 8.5. Estimating LS factors

A soil that is very susceptible to rilling has a slope length of 210 ft and an average slope of 15%. Estimate the LS factor if:

- (1) the slope is uniform
- (2) the slope is convex with slopes of 10, 15, and 20% on segments 1, 2, and 3
- (3) the slope is concave with slopes of 20, 15, and 10% on segments 1, 2, and 3.

Assume that the soil is not freezing and thawing. *Solution:*

1. Uniform slope. The slope angle is

$$\theta = \tan^{-1} 0.15 = 8.53^{\circ}.$$

From Eq. (8.45) for soils moderately susceptible to rilling,

$$\beta = \frac{11.16 \sin 8.53}{3.0(\sin 8.53)^{0.8} + 0.56} = 1.37.$$