

REPORT

2020 Second Semiannual Groundwater Monitoring Report

Class 2 Landfill North CAMU - 3rd and 4th Quarter Events

Former Exide Technologies Frisco Recycling Center - Frisco, Texas

TCEQ SWR No. 30516

Submitted to:

Mr. Mack Borchardt City of Frisco 6101 Frisco Square Boulevard Frisco, TX 75034

Submitted by:

Golder Associates Inc.

13515 Barrett Parkway Drive, Suite 260 Ballwin, Missouri, USA 63021

+1 314 984-8800

20409062

January 15, 2021

GOLDER ASSOCIATES INC. Geoscience Firm Registration Certificate Number 50369

Distribution List

- TCEQ Austin 2 hard copies, 1 electronic copy
- TCEQ Region 4 1 hard copy
- George Purefoy Frisco City Manager (City of Frisco), 1 electronic copy
- Jason Gray J.D Gray Group (City of Frisco), 1 electronic copy
- Brad Weaver JEM Connections LLC (City of Frisco), 1 electronic copy

Table of Contents

1.0	INTRO	DDUCTION	.5
	1.1	Site Description	.5
	1.2	Uppermost Groundwater-Bearing Unit	.5
	1.3	Monitoring Well System	.5
2.0	FIELD	SAMPLING ACTIVITIES	.6
	2.1	Groundwater Sampling	.6
	2.2	Well Inspection and Purging Summary	.6
	2.2.1	Third Quarter Event (August 2020)	.6
	2.2.2	Fourth Quarter Event (December 2020)	.7
3.0	RESU	LTS	.7
	3.1	Groundwater Flow	.7
	3.2	Analytical Results	.7
	3.3	QA/QC Samples	.7
	3.4	Data Validation	.7
4.0	CLOS	ING	.8
5.0	REFE	RENCES	.9

TABLES

Table 1	Summary of Monitoring Well Data – Third Quarter 2020
Table 2	Summary of Monitoring Well Data – Fourth Quarter 2020

- Table 3
 Summary of Groundwater Analytical Results Third Quarter 2020
- Table 4
 Summary of Groundwater Analytical Results Fourth Quarter 2020

FIGURES

- Figure 1 Site Location Map
- Figure 2 Monitoring Well Location Map
- Figure 3 Potentiometric Surface Map Third Quarter 2020
- Figure 4 Potentiometric Surface Map Fourth Quarter 2020

APPENDICES

- Appendix A Monitoring Well Inspection Forms
- Appendix B Groundwater Sampling Forms
- Appendix C Groundwater Laboratory Analytical Results
- Appendix D Data Usability Summaries

1.0 INTRODUCTION

Golder Associates Inc. (Golder) is pleased to submit this report summarizing third and fourth quarter 2020 groundwater monitoring activities for the Class 2 Landfill North Corrective Action Management Unit (hereafter, the Landfill or North CAMU) located at the Former Exide Technologies (Exide) Frisco Recycling Facility Former Operating Plant (FOP) in Frisco, Collin County, Texas. This report summarizes groundwater sampling methods, laboratory analyses and results for groundwater monitoring which was conducted in general accordance with the Revised Class 2 Landfill Groundwater Monitoring Plan (Monitoring Plan), by Pastor, Behling & Wheeler, dated July 31, 2013 [1], the Texas Commission on Environmental Quality (TCEQ) Approval with Modifications, dated April 4, 2014 [2] and subsequent correspondence with the TCEQ.

1.1 Site Description

A location map of the Landfill is provided as Figure 1. The locations of the groundwater monitoring wells in the Landfill vicinity are shown on Figure 2. Initial notification for construction of an on-site Class 2 industrial landfill, including engineering plans and a landfill operations plan, was provided to the Texas Natural Resource Conservation Commission (TNRCC) by GNB Technologies, Inc. in August 1995. TNRCC acknowledgement of receipt and review of the notification was provided in a September 14, 1995, letter. Landfill construction commenced thereafter and FOP records indicate that the Landfill operations began in 1996. The Landfill currently consists of fifteen cells, nine of which (cells 1 through 9) have been closed and capped. The closed cells of the Landfill consist of treated slag monofills [1]. The active cells of the Landfill currently contain treated slag, but also contain Class 2 wastes generated during the demolition and remediation activities at the FOP [1] and remediation activities at the Undeveloped Buffer Property (UBP) initiated in early 2017. In June 2018, a temporary cover was installed at the Landfill following completion of remediation activities at the UBP.

1.2 Uppermost Groundwater-Bearing Unit

The uppermost groundwater bearing unit (GWBU) in the vicinity of the Landfill consists of clay-rich alluvial soils of Quaternary age situated unconformably above the Eagle Ford Formation [1]. As indicated in boring logs for the groundwater monitoring wells surrounding the Landfill, the Eagle Ford Formation occurs at depths ranging from approximately 14 to 24 feet below ground surface (bgs). Groundwater within the upper GWBU generally occurs under unconfined conditions at depths between approximately 10 and 25 feet bgs. Monitoring well locations are shown on Figure 2.

1.3 Monitoring Well System

The current monitoring well network for the Landfill consists of eleven monitoring wells. Based on the groundwater potentiometric surfaces shown on Figure 3 and Figure 4 and the projected groundwater flow paths near the Landfill, the Landfill groundwater monitoring network can be classified as follows:

- Up-gradient monitoring wells: PMW-19R and MW-45
- Cross-gradient monitoring wells: LMW-8 and LMW-9R
- Down-gradient monitoring wells: LMW-5, LMW-17, PMW-20R, LMW-21, LMW-22, MW-41, and MW-47

Well construction information for these wells is summarized in Table 1 and Table 2.

2.0 FIELD SAMPLING ACTIVITIES

2.1 Groundwater Sampling

Eleven monitoring wells of the Landfill monitoring well network, MW-45, PMW-19R, LMW-9R, LMW-8, LMW-17, LMW-22, LMW-5, LMW-21, PMW-20R, MW-41, and MW-47 were sampled during the third and fourth quarter sampling events.

Prior to sampling, monitoring wells were inspected and the condition of the protective covers, concrete pads, riser pipes, and well caps were recorded on monitoring well inspection forms, which are included in Appendix A. Next, monitoring well depths to water and total well depths were noted on field forms which are summarized on Table 1 for the third quarter event and Table 2 for the fourth quarter event. The electronic water level probe was decontaminated with Alconox® solution and a deionized water rinse prior to use and between sampling at each monitoring well.

The monitoring wells were then purged until stabilization parameters (temperature, pH, and specific conductivity) were within 10% on three consecutive readings or three well volumes had been removed from the monitoring well. Monitoring wells were purged using a peristaltic pump and new polyethylene tubing at each sample location. A flow rate of less than 0.3 liters per minute was sustained during purging.

After purging was completed, groundwater samples were collected using a peristaltic pump with new polyethylene tubing. Groundwater sampled for dissolved metals analysis was field filtered using disposable (one-time use) 0.45-micron filters and transferred into laboratory-supplied containers pre-preserved with nitric acid. The turbidity was not above 10 nephelometric turbidity units (NTU) at the time of sampling and no filtering of samples for total metals analysis was required. The monitoring wells were sampled for total metals analysis by filling laboratory-supplied containers pre-preserved with nitric acid directly from the pump discharge tubing. One duplicate sample was collected for Quality Assurance/Quality Control (QA/QC) during the sampling events.

After collection in the field, groundwater and QA/QC samples were labeled with the sample identification number, requested analysis, collection date, and sampler's initials, and placed on ice in a cooler and shipped by Golder under chain-of-custody protocol via FedEx overnight transport to the ALS Environmental Laboratory (ALS) in Houston, Texas for analysis of dissolved and total metals by USEPA SW-846 Method 6020A. Arsenic, cadmium, lead, and selenium were reported for both the third and fourth quarter sampling events.

Purged groundwater and decontamination water were containerized in 55-gallon steel drums and staged as directed by Exide personnel (at the time of the third quarter sampling event) or City of Frisco employee (at the time of the fourth quarter sampling event). Approximately 15.0 and 14.2 gallons of purged groundwater were containerized during the third and fourth quarter events, respectively. The monitoring wells were locked prior to demobilization from the Site.

2.2 Well Inspection and Purging Summary

2.2.1 Third Quarter Event (August 2020)

Each of the monitoring wells sampled at the Landfill were purged and sampled on either August 26th or August 27th as described in Section 2.1. Each monitoring well was found locked upon arrival. At the time of sampling, the weather was cloudy or sunny with daytime high temperatures in the eighties to nineties degrees Fahrenheit. During the September sampling event, monitoring wells MW-47, MW-41, LMW-21, LMW-5, LMW-17, and PMW-

19R stabilized within four parameter readings and LMW-22, LMW-9R, PMW-20R, LMW-8, and MW-45 stabilized within five parameter readings.

2.2.2 Fourth Quarter Event (December 2020)

Each of the monitoring wells sampled at the Landfill were purged and sampled on either December 7th or December 8th as described in Section 2.1. Each monitoring well was found locked upon arrival. At the time of sampling, the weather was sunny with daytime high temperatures in the fifties and sixties degrees Fahrenheit. During the December sampling, monitoring wells MW-41, LMW-21, LMW-5, LMW-17, and PMW-19R stabilized within four parameter readings. Monitoring wells LMW-22, MW-47, PMW-20R, LMW-8, and MW-45 stabilized within five parameter readings and LMW-9R stabilized within six parameter readings. All wells and well pads appeared to be in good condition at the time of sampling.

3.0 **RESULTS**

3.1 Groundwater Flow

Monitoring well water level data for the third and fourth quarter events are summarized in Table 1 and Table 2, respectively. In the Landfill area, the potentiometric surfaces shown on Figures 3 and 4 generally slope toward the southwest at a gradient of approximately 0.03 to 0.04 feet per foot (ft/ft). The groundwater levels and gradients measured during the third and fourth quarter sampling events are generally consistent with past groundwater monitoring events.

3.2 Analytical Results

Analytical results are summarized in Table 3 (third quarter event) and Table 4 (fourth quarter event) and laboratory reports are included in Appendix C. The laboratory analytical results for dissolved metals and total metals were below the applicable Residential Assessment Levels (RALs) or Protective Concentration Levels (PCLs).

3.3 QA/QC Samples

The laboratory analytical results for the duplicates are presented in Table 3 and Table 4 for the third and fourth quarter events, respectively.

3.4 Data Validation

Golder completed a review of the above chemical analysis data for conformance with the requirements of the Texas Risk Reduction Program (TRRP) guidance document, Review and Reporting of COC Concentration Data (RGG-366/TRRP-13 Revised May 2010) and for adherence to project objectives. The results of the review are discussed in the data usability summary (DUS) which is included as Appendix D. No results required rejection of data.

4.0 CLOSING

Golder appreciates the opportunity to serve as your consultant on this project. If you have any questions concerning this report or need additional information, please contact the undersigned at 314-984-8800.

Golder Associates Inc.

Emily Forthaus

Emily P. Forthaus Project Geological Engineer

Anne Fauth - Boyd

Anne M. Faeth-Boyd, P.G. *Associate and Senior Consultant*

EPF/AMF

5.0 **REFERENCES**

- [1] Pastor, Behling & Wheeler, LLC. (July 31, 2013). *Revised Class 2 Landfill Groundwater Monitoring Plan*.
- [2] Texas Commission on Environmental Quality (April 4, 2014). *Approval with Modifications, Class 2 Landfill Groundwater Monitoring Plan, dated July 31, 2013.*

Tables

TABLE 1THIRD QUARTER 2020SUMMARY OF MONITORING WELL DATANORTH CAMUFORMER EXIDE FRISCO RECYCLING FACILITY

FRISCO, TEXAS

Well ID	Date Drilled	Ground Surface Elevation ¹	Top of Casing Elevation ¹	Depth to Water	Groundwater Elevation ²	Depth of Well	Screened Interval	Well Diameter	Water Column Length	Well Casing Volume ³	Actual Volume Purged
		(feet AMSL)	(feet AMSL)	(feet BTOC)	(feet AMSL)	(feet BTOC)	(feet BGS)	(inches)	(feet)	(gallons)	(gallons)
MW-45	1/14/2014	657.90	660.86	12.98	647.88	22.55	10 - 20	2	9.57	1.6	1.25
PMW-19R	2/26/2013	678.45	681.79	18.41	663.38	22.70	4 - 19	2	4.29	0.7	0.8
LMW-9R	3/1/2016	661.39	664.31	13.88	650.43	32.94	15 - 30	2	19.06	3.1	1.25
LMW-8	2/4/1995	645.57	648.72	15.23	633.49	24.05	7 - 21.5	2	8.82	1.4	1.00
LMW-22	2/27/2013	643.32	646.99	16.51	630.48	23.15	5 - 20	2	6.64	1.1	1.25
LMW-17	7/24/1995	646.34	648.70	18.01	630.69	25.43	10 - 20	4	7.42	4.8	1.60
LMW-5	2/3/1995	643.27	646.07	15.97	630.10	25.27	7 - 21.5	2	9.30	1.5	1.60
LMW-21	2/27/2013	645.12	648.28	18.43	629.85	28.09	10 - 25	2	9.66	1.6	1.60
PMW-20R	2/26/2013	645.20	648.09	18.31	629.78	28.27	10 - 25	2	9.96	1.6	2.00
MW-41	1/14/2014	639.17	642.17	11.17	631.00	19.15	6 - 16	2	7.98	1.3	1.60
MW-47	5/2/2017	635.65	638.28	7.02	631.26	17.95	7.5 - 15	2	10.93	1.8	1.00
MW-42	1/14/2014	638.71	642.24	7.76	634.48	NS	5-15	2	NS	NS	NS
P-1	5/8/1990	645.95	647.24	11.27	635.97	NS	10-20	2	NS	NS	NS

<u>Notes</u>

¹ - Ground surface elevations and top of casing elevations were surveyed in 2013 & 2014 by Sparr Surveys of McKinney, Texas.

Ground surface elevation and top of casing elevation for LMW-9R was surveyed on March 7, 2016 by Brittain & Crawford, LLC of Fort Worth, Texas.

Ground surface elevations and top of casing elevations for MW-47 and MW-41 were surveyed on June 13, 2017 by Brittain & Crawford, LLC of Fort Worth, Texas. ² - Groundwater elevation obtained by subtracting the depth to water from the top of casing elevation.

³ - Well casing volume = $\frac{\pi D^2}{4} * 7.5 * Water Column Height$, where 7.5 is a factor conversion from cubic feet to gallons, and D is the diameter of the casing.

Groundwater levels measured on August 26, 2020.

AMSL - above mean sea level

BTOC - below top of casing BGS - below ground surface

NS - not sampled

CAMU - Corrective Action Management Unit

Prepared by: BTT 09/08/2020 Checked by: EPF 09/22/2020 Reviewed by: AMF 12/30/2020

20409062

TABLE 2 FOURTH QUARTER 2020 SUMMARY OF MONITORING WELL DATA NORTH CAMU

FORMER EXIDE FRISCO RECYCLING FACILITY FRISCO, TEXAS

Well ID	Date Drilled	Ground Surface Elevation ¹ (feet AMSL)	Top of Casing Elevation ¹ (feet AMSL)	Depth to Water (feet BTOC)	Groundwater Elevation ² (feet AMSL)	Depth of Well (feet BTOC)	Screened Interval (feet BGS)	Well Diameter (inches)	Water Column Length (feet)	Well Casing Volume³ (gallons)	Actual Volume Purged (gallons)
MW-45	1/14/2014	657.90	660.86	13.14	647.72	22.57	10 - 20	2	9.43	1.5	1.25
PMW-19R	2/26/2013	678.45	681.79	19.23	662.56	22.70	4 - 19	2	3.47	0.6	0.8
LMW-9R	3/1/2016	661.39	664.31	14.91	649.40	32.91	15 - 30	2	18.00	2.9	1.5
LMW-8	2/4/1995	645.57	648.72	15.11	633.61	24.05	7 - 21.5	2	8.94	1.5	1.0
LMW-22	2/27/2013	643.32	646.99	16.58	630.41	23.15	5 - 20	2	6.57	1.1	1.25
LMW-17	7/24/1995	646.34	648.70	18.06	630.64	25.44	10 - 20	4	7.38	4.8	1.6
LMW-5	2/3/1995	643.27	646.07	16.16	629.91	25.25	7 - 21.5	2	9.09	1.5	1.2
LMW-21	2/27/2013	645.12	648.28	18.71	629.57	28.08	10 - 25	2	9.37	1.5	1.2
PMW-20R	2/26/2013	645.20	648.09	18.42	629.67	28.25	10 - 25	2	9.83	1.6	1.6
MW-41	1/14/2014	639.17	642.17	10.49	631.68	19.15	6 - 16	2	8.66	1.4	1.2
MW-47	5/2/2017	635.65	638.28	6.48	631.80	17.93	7.5 - 15	2	11.45	1.9	1.6
MW-42	1/14/2014	638.71	642.24	8.46	633.78	NS	5-15	2	NS	NS	NS
P-1	5/8/1990	645.95	647.24	11.51	635.73	NS	10-20	2	NS	NS	NS

<u>Notes</u>

¹ - Ground surface elevations and top of casing elevations were surveyed in 2013 & 2014 by Sparr Surveys of McKinney, Texas.

Ground surface elevation and top of casing elevation for LMW-9R was surveyed on March 7, 2016 by Brittain & Crawford, LLC of Fort Worth, Texas.

Ground surface elevations and top of casing elevations for MW-47 and MW-41 were surveyed on June 13, 2017 by Brittain & Crawford, LLC of Fort Worth, Texas. ² - Groundwater elevation obtained by subtracting the depth to water from the top of casing elevation.

³ - Well casing volume = $\frac{\pi D^2}{4} * 7.5 * Water Column Height$, where 7.5 is a factor conversion from cubic feet to gallons, and D is the diameter of the casing.

Groundwater levels measured on December 7, 2020.

AMSL - above mean sea level

BTOC - below top of casing

BGS - below ground surface

NS - not sampled

CAMU - Corrective Action Management Unit

Prepared by: AMM 12/09/2020 Checked by: EPF 12/10/2020 Reviewed by: AMF 12/20/2020

20409062

Monitoring Well				PMW-20R	SDL	LMW-5	SDL	LMW-21	SDL	MW-45	SDL	MW-41	SDL	PMW-19R	SDL
Lab Sample ID				HS20081252-07		HS20081252-05		HS20081252-06		HS20081252-01		HS20081252-08		HS20081252-02	
Date Sampled				8/26/2020		8/26/2020		8/26/2020		8/26/2020		8/26/2020		8/26/2020	
Time Sampled				14:32		13:16		13:49		10:45		15:08		11:20	
Metals (USEPA Method 6020A) Total Recoverable							· •		· •		· ·		· · · · · · · · · · · · · · · · · · ·		
Date Prepared				8/31/2020		8/31/2020		8/31/2020		8/31/2020		8/31/2020		8/31/2020	
Date Analyzed				8/31/2020		8/31/2020		8/31/2020		8/31/2020		8/31/2020		8/31/2020	
Analyte	CAS No.	RAL ¹ (mg/L)	PCL ² (mg/L)	(mg/L)		(mg/L)		(mg/L)		(mg/L)		(mg/L)		(mg/L)	
Antimony	7440-36-0	0.006	0.006	NS		NS		NS		NS		NS		NS	T
Arsenic	7440-38-2	0.01	0.01	0.000400 U	0.000400	0.000400 U	0.000400	0.000400 U	0.000400	0.000400 U	0.000400	0.000873 U	0.000400	0.000631 U	0.000400
Barium	7440-39-3	2	2	NS		NS		NS		NS		NS		NS	
Cadmium	7440-43-9	0.005	0.005	0.000200 U	0.000200	0.000200 U	0.000200	0.000200 U	0.000200	0.000200 U	0.000200	0.000200 U	0.000200	0.000200 U	0.000200
Chromium	7440-47-3	0.1	0.1	NS		NS		NS		NS		NS		NS	
Copper	7440-50-8	1.3	1.3	NS		NS		NS		NS		NS		NS	
Lead	7439-92-1	0.015	0.015	0.00119 J	0.000600	0.00114 J	0.000600	0.000851 J	0.000600	0.000600 U	0.000600	0.00123 J	0.000600	0.000600 U	0.000600
Selenium	7782-49-2	0.05	0.05	0.00110 U	0.00110	0.00110 U	0.00110	0.00517	0.00110	0.00143 J	0.00110	0.00110 U	0.00110	0.00110 U	0.00110
Silver	7440-22-4	0.12	0.37	NS		NS		NS		NS		NS		NS	
Zinc	7440-66-6	7.3	22	NS		NS		NS		NS		NS		NS	
Metals (USEPA Method 6020A) Dissolved															
Date Prepared				9/1/2020		9/1/2020		9/1/2020		9/1/2020		9/1/2020		9/1/2020	
Date Analyzed				9/3/2020		9/3/2020		9/3/2020		9/2/2020		9/3/2020		9/3/2020	
Analyte	CAS No.	RAL ¹ (mg/L)	PCL ² (mg/L)	(mg/L)		(mg/L)		(mg/L)		(mg/L)		(mg/L)		(mg/L)	
Antimony	7440-36-0	0.006	0.006	NS		NS		NS		NS		NS		NS	
Arsenic	7440-38-2	0.01	0.01	0.000400 U	0.000400	0.000400 U	0.000400	0.000571 J	0.000400	0.000558 J	0.000400	0.000595 J	0.000400	0.000932 J	0.000400
Barium	7440-39-3	2	2	NS		NS		NS		NS		NS		NS	
Cadmium	7440-43-9	0.005	0.005	0.000200 U	0.000200	0.000200 U	0.000200	0.000200 U	0.000200	0.000200 U	0.000200	0.000200 U	0.000200	0.000200 U	0.000200
Chromium	7440-47-3	0.1	0.1	NS		NS		NS		NS		NS		NS	
Copper	7440-50-8	1.3	1.3	NS		NS		NS		NS		NS		NS	
Lead	7439-92-1	0.015	0.015	0.000600 U	0.000600	0.000600 U	0.000600	0.000600 U	0.000600	0.000600 U	0.000600	0.000600 U	0.000600	0.000600 U	0.000600
Selenium	7782-49-2	0.05	0.05	0.00112 J	0.00110	0.00110 U	0.00110	0.00531	0.00110	0.00120 J	0.00110	0.00110 U	0.00110	0.00146 J	0.00110
Silver	7440-22-4	0.12	0.37	NS		NS		NS		NS		NS		NS	
Zinc	7440-66-6	7.3	22	NS		NS		NS		NS		NS		NS	
Mercury (USEPA Method 7470A)															
Date Prepared				N/A		N/A		N/A		N/A		N/A		N/A	
Date Analyzed				N/A		N/A		N/A		N/A		N/A		N/A	
Analyte	CAS No.	RAL ¹ (mg/L)	PCL ² (mg/L)	(mg/L)		(mg/L)		(mg/L)		(mg/L)		(mg/L)		(mg/L)	
Mercury	7439-97-6	0.002	0.002	NS		NS		NS		NS		NS		NS	
Mercury (USEPA Method 7470A) Dissolved	· · · · · · · · · · · · · · · · · · ·	·	·		· I		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		*	·		
Date Prepared				N/A		N/A		N/A		N/A		N/A		N/A	
Date Analyzed				N/A		N/A		N/A		N/A		N/A		N/A	
Analyte	CAS No.	RAL ¹ (mg/L)	PCL ² (mg/L)	(mg/L)		(mg/L)		(mg/L)		(mg/L)	-	(mg/L)		(mg/L)	
· · · · · ·		······································	······································	\		((····ə·=)		(····ə··=)		(NS	

<u>Notes</u> Results in **bold italics** denote detections.

Results highlighted in **yellow** denote applicable RAL or PCL exceedances.

USEPA - United States Environmental Protection Agency.

RAL - Residential Assessment Level.

PCL - Protective Concentration Level.

SDL - Sample Detection Limit.

TRRP - Texas Risk Reduction Program.

N/A - Not Applicable.

NS - Not Sampled. mg/L - Milligrams per liter.

CAMU - Corrective Action Management Unit.

¹ - The Groundwater Residential Assessment Level (GW RAL) is the TRRP Tier 1 Residential ^{GW}GW_{Ing} PCL applicable for Class 2 groundwater ingestion.

² - The Groundwater Critical PCL is the TRRP Tier 1 Commercial/Industrial ^{GW}GW_{Ing} PCL applicable for Class 2 groundwater ingestion.

Some sample detections were qualified non-detect based on the detection in the associated method blank; see data usability summary in Appendix D for more information.

Flags and Qualifiers

U - Analyte was not detected at or above the Method Detection Limit (SDL).

J - Result is an estimated value.

Prepared by: BTT 09/08/2020 Checked by: EPF 12/22/2020 Reviewed by: AMF 12/30/2020

TABLE 3 THIRD QUARTER 2020 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS CLASS 2 LANDFILL NORTH CAMU FORMER EXIDE FRISCO RECYCLING FACILITY FRISCO, TEXAS

Monitoring Well				LMW-9R	SDL	LMW-8	SDL	LMW-17	SDL	LMW-22	SDL	MW-47	SDL	DUP-01	SDL
Lab Sample ID				HS20081252-10		HS-20081252-03		HS20081252-04		HS19090490-11		HS20081252-09		HS20081252-12	
Date Sampled				8/26/2020		8/26/2020		8/26/2020		8/27/2020		8/26/2020		8/26/2020	
Time Sampled				16:26		12:00		12:40		8:34		15:47		13:16	
Metals (USEPA Method 6020A) Total Recoverable															
Date Prepared				8/31/2020		8/31/2020		8/31/2020		8/31/2020		8/31/2020		8/31/2020	
Date Analyzed				9/3/2020		8/31/2020		8/31/2020		9/3/2020		8/31/2020		9/3/2020	
Analyte	CAS No.	RAL ¹ (mg/L)	PCL ² (mg/L)	(mg/L)		(mg/L)		(mg/L)		(mg/L)		(mg/L)		(mg/L)	,
Antimony	7440-36-0	0.006	0.006	NS		NS		NS		NS		NS		NS	
Arsenic	7440-38-2	0.01	0.01	0.000554 U	0.000400	0.000431 U	0.000400	0.000400 U	0.000400	0.00932	0.000400	0.000485 U	0.000400	0.000400 U	0.000400
Barium	7440-39-3	2	2	NS		NS		NS		NS		NS		NS	
Cadmium	7440-43-9	0.005	0.005	0.000200 U	0.000200	0.000200 U	0.000200	0.000200 U	0.000200	0.000200 U	0.000200	0.000200 U	0.000200	0.000200 U	0.000200
Chromium	7440-47-3	0.1	0.1	NS		NS		NS		NS		NS		NS	
Copper	7440-50-8	1.3	1.3	NS		NS		NS		NS		NS		NS	
Lead	7439-92-1	0.015	0.015	0.000600 U	0.000600	0.000600 U	0.000600	0.000600 U	0.000600	0.000600 U	0.000600	0.000600 U	0.000600	0.00126 J	0.000600
Selenium	7782-49-2	0.05	0.05	0.00110 U	0.00110	0.0126	0.00110	0.00138 J	0.00110	0.00110 U	0.00110	0.00110 U	0.00110	0.00110 U	0.00110
Silver	7440-22-4	0.12	0.37	NS		NS		NS		NS		NS		NS	
Zinc	7440-66-6	7.3	22	NS		NS		NS		NS		NS		NS	
Metals (USEPA Method 6020A) Dissolved															
Date Prepared				9/1/2020		9/1/2020		9/1/2020		9/1/2020		9/1/2020		9/1/2020	Τ
Date Analyzed				9/3/2020		9/3/2020		9/3/2020		9/3/2020		9/3/2020		9/3/2020	
Analyte	CAS No.	RAL ¹ (mg/L)	PCL ² (mg/L)	(mg/L)		(mg/L)		(mg/L)		(mg/L)		(mg/L)		(mg/L)	
Antimony	7440-36-0	0.006	0.006	NS NS		NS		NS NS		NS		NS NS		NS NS	1
Arsenic	7440-38-2	0.01	0.01	0.000662 J	0.000400	0.000492 J	0.000400	0.000515 J	0.000400	0.00721	0.000400	0.000455 J	0.000400	0.000463 J	0.000400
Barium	7440-39-3	2	2	NS		NS		NS		NS		NS		NS	
Cadmium	7440-43-9	0.005	0.005	0.000200 U	0.000200	0.000200 U	0.000200	0.000200 U	0.000200	0.000200 U	0.000200	0.000200 U	0.000200	0.000200 U	0.000200
Chromium	7440-47-3	0.1	0.1	NS		NS		NS		NS		NS		NS	1
Copper	7440-50-8	1.3	1.3	NS		NS		NS		NS		NS		NS	
Lead	7439-92-1	0.015	0.015	0.000600 U	0.000600	0.000600 U	0.000600	0.000600 U	0.000600	0.000600 U	0.000600	0.000600 U	0.000600	0.000600 U	0.000600
Selenium	7782-49-2	0.05	0.05	0.00110 U	0.00110	0.0109	0.00110	0.00138 J	0.00110	0.00110 U	0.00110	0.00110 U	0.00110	0.00110 U	0.00110
Silver	7440-22-4	0.12	0.37	NS		NS		NS		NS		NS		NS	
Zinc	7440-66-6	7.3	22	NS		NS		NS		NS		NS		NS	
Mercury (USEPA Method 7470A)															
Date Prepared				N/A		N/A		N/A		N/A		N/A		N/A	T
Date Analyzed				N/A		N/A		N/A		N/A		N/A		N/A	
Analyte	CAS No.	RAL ¹ (mg/L)	PCL ² (mg/L)	(mg/L)		(mg/L)		(mg/L)		(mg/L)		(mg/L)		(mg/L)	
Mercury	7439-97-6	0.002	0.002	NS NS		NS NS		NS NS		NS NS		NS NS		NS NS	T
Mercury (USEPA Method 7470A) Dissolved											l		L		
Date Prepared				N/A		N/A		N/A		N/A		N/A		N/A	T
Date Analyzed				N/A		N/A		N/A		N/A		N/A		N/A	1
Analyte	CAS No.	RAL ¹ (mg/L)	PCL ² (mg/L)	(mg/L)		(mg/L)		(mg/L)		(mg/L)	<u>.</u>	(mg/L)	1	(mg/L)	
Mercury	7439-97-6	0.002	0.002	NS NS		NS NS		NS	 	NS NS		NS	1	NS NS	

<u>Notes</u> Results in **bold italics** denote detections.

Results highlighted in **yellow** denote applicable RAL or PCL exceedances.

USEPA - United States Environmental Protection Agency.

RAL - Residential Assessment Level.

PCL - Protective Concentration Level.

SDL - Sample Detection Limit.

TRRP - Texas Risk Reduction Program.

N/A - Not Applicable.

NS - Not Sampled.

mg/L - Milligrams per liter. CAMU - Corrective Action Management Unit.

¹ - The Groundwater Residential Assessment Level (GW RAL) is the TRRP Tier 1 Residential ^{GW}GW_{Ing} PCL applicable for Class 2 groundwater ingestion.

² - The Groundwater Critical PCL is the TRRP Tier 1 Commercial/Industrial ^{GW}GW_{Ing} PCL applicable for Class 2 groundwater ingestion.

Some sample detections were qualified non-detect based on the detection in the associated method blank; see data usability summary in Appendix D for more information.

Flags and Qualifiers

U - Analyte was not detected at or above the Method Detection Limit (SDL).

J - Result is an estimated value.

Prepared by: BTT 09/08/2020 Checked by: EPF 12/22/2020 Reviewed by: AMF 12/30/2020

TABLE 3 THIRD QUARTER 2020 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS CLASS 2 LANDFILL NORTH CAMU FORMER EXIDE FRISCO RECYCLING FACILITY FRISCO, TEXAS

Monitoring Well				PMW-20R	SDL	LMW-5	SDL	LMW-21	SDL	MW-45	SDL	MW-41	SDL	PMW-19R	SDL
Lab Sample ID				HS20120485-07		HS20120485-05		HS20120485-06		HS20120485-01		HS20120485-08		HS20120485-02	
Date Sampled				12/7/2020		12/7/2020		12/7/2020		12/7/2020		12/7/2020		12/7/2020	
Time Sampled				14:40		13:30		14:03		11:15		15:14		11:50	
Metals (USEPA Method 6020A) Total Recoverable						<u>1</u>			<u> </u>				<u> </u>		
Date Prepared				12/15/2020		12/15/2020	I	12/15/2020		12/15/2020		12/15/2020		12/15/2020	
Date Analyzed				12/17/2020		12/17/2020		12/17/2020		12/17/2020		12/17/2020		12/16/2020	
Analyte	CAS No.	RAL ¹ (mg/L)	PCL ² (mg/L)	(mg/L)		(mg/L)		(mg/L)		(mg/L)	1	(mg/L)	· · · · · · · · · · · · · · · · · · ·	(mg/L)	
Antimony	7440-36-0	0.006	0.006	NS		NS		NS NS		NS NS		NS		NS NS	
Arsenic	7440-38-2	0.01	0.01	0.000681 J	0.000400	0.00106 J	0.000400	0.00125 J	0.000400	0.000907 J	0.000400	0.00403	0.000400	0.00163 J	0.000400
Barium	7440-39-3	2	2	NS		NS		NS		NS		NS		NS	
Cadmium	7440-43-9	0.005	0.005	0.000200 U	0.000200	0.000200 U	0.000200	0.000200 U	0.000200	0.000200 U	0.000200	0.000200 U	0.000200	0.000200 U	0.000200
Chromium	7440-47-3	0.1	0.1	NS		NS		NS		NS		NS		NS	
Copper	7440-50-8	1.3	1.3	NS		NS		NS		NS		NS		NS	
Lead	7439-92-1	0.015	0.015	0.00107 J	0.000600	0.000725 J	0.000600	0.00635	0.000600	0.000600 U	0.000600	0.000835 J	0.000600	0.000659 J	0.000600
Selenium	7782-49-2	0.05	0.05	0.00110 U	0.00110	0.00164 J	0.00110	0.00411	0.00110	0.00188 J	0.00110	0.00110 U	0.00110	0.00110 U	0.00110
Silver	7440-22-4	0.12	0.37	NS		NS		NS		NS		NS		NS	
Zinc	7440-66-6	7.3	22	NS		NS		NS		NS		NS		NS	
Metals (USEPA Method 6020A) Dissolved															
Date Prepared				12/11/2020		12/11/2020		12/11/2020		12/11/2020		12/11/2020		12/11/2020	
Date Analyzed				12/16/2020		12/16/2020		12/16/2020		12/16/2020		12/16/2020		12/16/2020	
Analyte	CAS No.	RAL ¹ (mg/L)	PCL ² (mg/L)	<u>(mg/L)</u>		(mg/L)		<u>(mg/L)</u>		<u>(</u> mg/L)		<u>(</u> mg/L)		<u>(</u> mg/L)	
Antimony	7440-36-0	0.006	0.006	NS		NS		NS		NS		NS		NS	
Arsenic	7440-38-2	0.01	0.01	0.000414 J	0.000400	0.000626 J	0.000400	0.000814 J	0.000400	0.000574 J	0.000400	0.000960 J	0.000400	0.000974 J	0.000400
Barium	7440-39-3	2	2	NS		NS		NS		NS		NS		NS	
Cadmium	7440-43-9	0.005	0.005	0.000200 U	0.000200	0.000200 U	0.000200	0.000200 U	0.000200	0.000200 U	0.000200	0.000200 U	0.000200	0.000200 U	0.000200
Chromium	7440-47-3	0.1	0.1	NS		NS		NS		NS		NS		NS	
Copper	7440-50-8	1.3	1.3	NS		NS		NS		NS		NS		NS	
Lead	7439-92-1	0.015	0.015	0.000600 U	0.000600	0.000600 U	0.000600	0.000740 J	0.000600	0.000600 U	0.000600	0.000600 U	0.000600	0.000600 U	0.000600
Selenium	7782-49-2	0.05	0.05	0.00110 U	0.00110	0.00110 U	0.00110	0.00285	0.00110	0.00110 U	0.00110	0.00110 U	0.00110	0.00110 U	0.00110
Silver	7440-22-4	0.12	0.37	NS		NS		NS		NS		NS		NS	
Zinc	7440-66-6	7.3	22	NS		NS		NS		NS		NS		NS	
Mercury (USEPA Method 7470A)															
Date Prepared				N/A		N/A		N/A		N/A		N/A		N/A	
Date Analyzed		1		N/A		N/A		N/A		N/A		N/A		N/A	
Analyte	CAS No.	RAL ¹ (mg/L)	PCL ² (mg/L)	(mg/L)		(mg/L)		(mg/L)		(mg/L)		(mg/L)		<u>(</u> mg/L)	
Mercury	7439-97-6	0.002	0.002	NS		NS		NS		NS		NS		NS	
Mercury (USEPA Method 7470A) Dissolved				· · · · · · · · · · · · · · · · · · ·	·				· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Date Prepared				N/A		N/A		N/A		N/A		N/A		N/A	
Date Analyzed				N/A		N/A		N/A		N/A		N/A		N/A	
Analyte	CAS No.	RAL ¹ (mg/L)	PCL ² (mg/L)	(mg/L)		(mg/L)		(mg/L)		(mg/L)		(mg/L)		(mg/L)	
Mercury	7439-97-6	0.002	0.002	NS		NS		NS		NS		NS		NS	

<u>Notes</u>

Results in *bold italics* denote detections.

USEPA - United States Environmental Protection Agency.

RAL - Residential Assessment Level.

PCL - Protective Concentration Level.

SDL - Sample Detection Limit.

TRRP - Texas Risk Reduction Program. N/A - Not Applicable.

NS - Not Sampled.

mg/L - Milligrams per liter.

CAMU - Corrective Action Management Unit.

¹ - The Groundwater Residential Assessment Level (GW RAL) is the TRRP Tier 1 Residential ^{GW}GW_{Ing} PCL applicable for Class 2 groundwater ingestion.

² - The Groundwater Critical PCL is the TRRP Tier 1 Commercial/Industrial ^{GW}GW_{Ing} PCL applicable for Class 2 groundwater ingestion.

Flags and Qualifiers

U - Analyte was not detected at or above the Method Detection Limit (SDL).

J - Result is an estimated value.

Prepared by: PBS 12/22/2020 Checked by: EPF 12/22/2020 Reviewed by: AMF 12/30/2020

TABLE 4FOURTH QUARTER 2020SUMMARY OF GROUNDWATER ANALYTICAL RESULTSCLASS 2 LANDFILL NORTH CAMUFORMER EXIDE FRISCO RECYCLING FACILITYFRISCO, TEXAS

Monitoring Well				LMW-9R	SDL	LMW-8	SDL	LMW-17	SDL	LMW-22	SDL	MW-47	SDL	DUP-01	SDL
Lab Sample ID				HS20120485-10		HS20120485-03		HS20120485-04		HS20120485-11		HS20120485-09		HS20120485-12	2
Date Sampled				12/7/2020		12/7/2020		12/7/2020		12/8/2020		12/7/2020		12/7/2020	
Time Sampled				16:40		12:10		12:55		9:16		15:55		13:30	
Metals (USEPA Method 6020A) Total Recoverable															
Date Prepared				12/15/2020		12/15/2020		12/15/2020		12/15/2020		12/15/2020		12/15/2020	
Date Analyzed				12/17/2020		12/16/2020		12/16/2020		12/17/2020		12/17/2020		12/17/2020	
Analyte	CAS No.	RAL ¹ (mg/L)	PCL ² (mg/L)	(mg/L)		(mg	/L)								
Antimony	7440-36-0	0.006	0.006	NS		NS									
Arsenic	7440-38-2	0.01	0.01	0.00198 J	0.000400	0.00142 J	0.000400	0.000663 J	0.000400	0.00855	0.000400	0.000676 J	0.000400	0.000655 J	0.000400
Barium	7440-39-3	2	2	NS		NS									
Cadmium	7440-43-9	0.005	0.005	0.000200 U	0.000200	0.000200 U	0.000200								
Chromium	7440-47-3	0.1	0.1	NS		NS									
Copper	7440-50-8	1.3	1.3	NS		NS									
Lead	7439-92-1	0.015	0.015	0.000600 U	0.000600	0.000670 J	0.000600	0.000600 U	0.000600	0.000600 U	0.000600	0.000600 U	0.000600	0.000600 U	0.000600
Selenium	7782-49-2	0.05	0.05	0.00311	0.00110	0.00695	0.00110	0.00110 U	0.00110	0.00110 U	0.00110	0.00110 U	0.00110	0.00110 U	0.00110
Silver	7440-22-4	0.12	0.37	NS		NS									
Zinc	7440-66-6	7.3	22	NS		NS									
Metals (USEPA Method 6020A) Dissolved															
Date Prepared				12/11/2020		12/11/2020		12/11/2020		12/11/2020		12/11/2020		12/11/2020	
Date Analyzed				12/16/2020		12/16/2020		12/16/2020		12/16/2020		12/16/2020		12/16/2020	
Analyte	CAS No.	RAL ¹ (mg/L)	PCL ² (mg/L)	<u>(</u> mg/L)		<u>(mg/L)</u>		<u>(</u> mg/L)		(mg/L)		(mg/L)		(mg	/L)
Antimony	7440-36-0	0.006	0.006	NS		NS									
Arsenic	7440-38-2	0.01	0.01	0.00210	0.000400	0.000894 J	0.000400	0.000675 J	0.000400	0.00750	0.000400	0.000588 J	0.000400	0.000650 J	0.000400
Barium	7440-39-3	2	2	NS		NS									
Cadmium	7440-43-9	0.005	0.005	0.000200 U	0.000200	0.000200 U	0.000200								
Chromium	7440-47-3	0.1	0.1	NS		NS									
Copper	7440-50-8	1.3	1.3	NS		NS									
Lead	7439-92-1	0.015	0.015	0.000600 U	0.000600	0.00102 J	0.000600								
Selenium	7782-49-2	0.05	0.05	0.00313	0.00110	0.00748	0.00110	0.00110 U	0.00110	0.00110 U	0.00110	0.00110 U	0.00110	0.00110 U	0.00110
Silver	7440-22-4	0.12	0.37	NS		NS									
Zinc	7440-66-6	7.3	22	NS		NS									
ZIIC															
Mercury (USEPA Method 7470A)															
Mercury (USEPA Method 7470A) Date Prepared				N/A		N/A		N/A		N/A		N/A		N/A	
				N/A N/A		N/A N/A		N/A N/A		N/A N/A		N/A N/A		N/A N/A	
Date Prepared Date Analyzed	CAS No.	RAL ¹ (mg/L)	PCL ² (mg/L)											N/A	/L)
Date Prepared		RAL¹ (mg/L) 0.002	PCL ² (mg/L) 0.002	N/A			/L)								
Date Prepared Date Analyzed Analyte	CAS No.			N/A (mg/L)		N/A (mg/L)		N/A (mg/L)		N/A (mg/L)		N/A (mg/L)		N/A (mg	/L)
Date Prepared Date Analyzed Analyte Mercury	CAS No.			N/A (mg/L)		N/A (mg/L)		N/A (mg/L)		N/A (mg/L)		N/A (mg/L)		N/A (mg	/L)
Date Prepared Date Analyzed Analyte Mercury Mercury (USEPA Method 7470A) Dissolved	CAS No.			N/A (mg/L) NS		N/A (mg/L) NS		N/A (mg/L) NS		N/A (mg/L) NS		N/A (mg/L) NS		N/A (mg NS	/L)
Date Prepared Date Analyzed Analyte Mercury Mercury (USEPA Method 7470A) Dissolved Date Prepared Date Analyzed	CAS No. 7439-97-6	0.002	0.002	N/A (mg/L) NS N/A N/A		N/A (mg NS N/A N/A									
Date Prepared Date Analyzed Analyte Mercury Mercury (USEPA Method 7470A) Dissolved Date Prepared	CAS No.			N/A (mg/L) NS N/A		N/A (mg/L) NS N/A		N/A (mg/L) NS N/A		N/A (mg/L) NS N/A		N/A (mg/L) NS N/A		N/A (mg NS N/A	

<u>Notes</u>

Results in *bold italics* denote detections.

USEPA - United States Environmental Protection Agency.

RAL - Residential Assessment Level.

PCL - Protective Concentration Level.

SDL - Sample Detection Limit.

TRRP - Texas Risk Reduction Program.

N/A - Not Applicable. NS - Not Sampled.

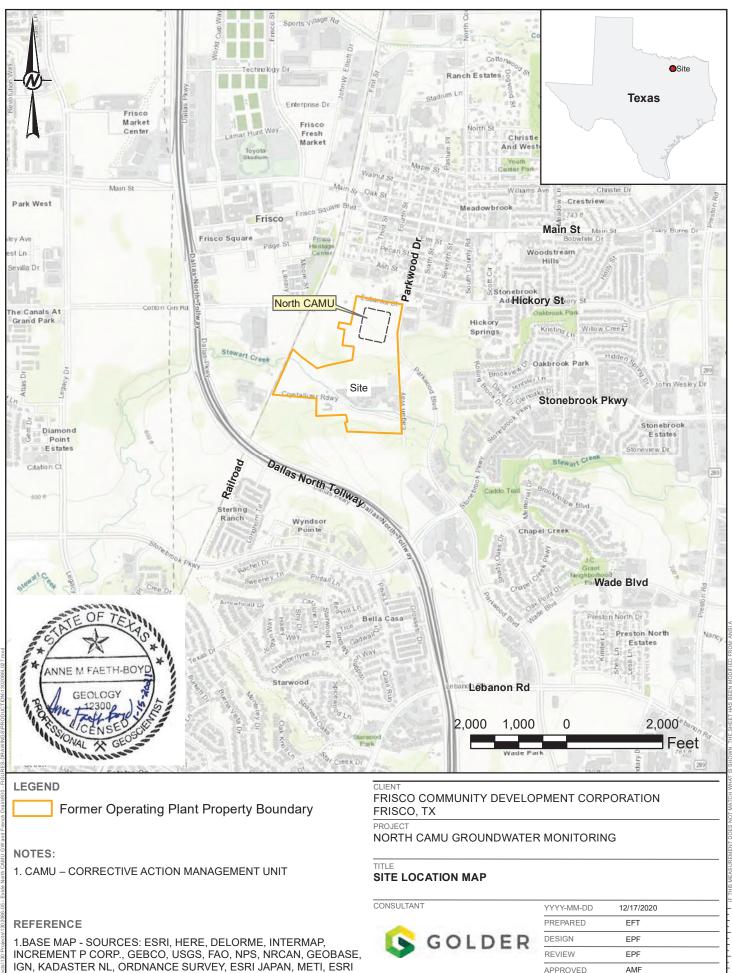
mg/L - Milligrams per liter.

CAMU - Corrective Action Management Unit.

¹ - The Groundwater Residential Assessment Level (GW RAL) is the TRRP Tier 1 Residential ^{GW}GW_{Ing} PCL applicable for Class 2 groundwater ingestion.

² - The Groundwater Critical PCL is the TRRP Tier 1 Commercial/Industrial ^{GW}GW_{Ing} PCL applicable for Class 2 groundwater ingestion.

Flags and Qualifiers


U - Analyte was not detected at or above the Method Detection Limit (SDL).

J - Result is an estimated value.

Prepared by: PBS 12/22/2020 Checked by: EPF 12/22/2020 Reviewed by: AMF 12/30/2020

TABLE 4FOURTH QUARTER 2020SUMMARY OF GROUNDWATER ANALYTICAL RESULTSCLASS 2 LANDFILL NORTH CAMUFORMER EXIDE FRISCO RECYCLING FACILITYFRISCO, TEXAS

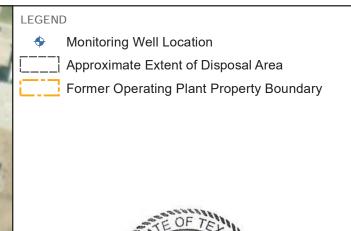
Figures

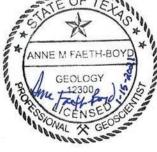
CHINA (HONG KONG), SWISSTOPO, MAPMYINDIA, © OPENSTREETMAP CONTRIBUTORS, AND THE GIS USER

o. CONTROL 1302086L027.mxd

PROJECT No.

20409062


1


FIGURE

Rev

0

NOTES

1. LMW-9 COLLAPSED AND WAS REPLACED WITH LMW-9R IN MARCH 2016 AND LMW-9 WAS SUBSEQUENTLY ABANDONED IN MAY 2017.

2. MW-47 WAS INSTALLED ON MAY 2, 2017. 3. CAMU – CORRECTIVE ACTION MANAGEMENT UNIT

REFERENCE

1. AERIAL IMAGERY - SOURCE: ESRI, MAXAR, GEOEYE, EARTHSTAR GEOGRAPHICS, CNES/AIRBUS DS, USDA, USGS, AEROGRID, IGN, AND THE GIS USER COMMUNITY SITE AERIAL IMAGERY - PROVIDED BY DALLAS AERIAL SURVEY, DATED APRIL, 2017.

FRISCO COMMUNITY DEVELOPMENT CORPORATION FRISCO, TX

PROJECT NORTH CAMU GROUNDWATER MONITORING

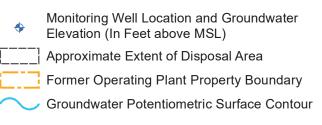
TITLE MONITORING WELL LOCATION MAP

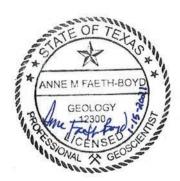
CONSULTANT

FIGURE

12/17/2020

EFT

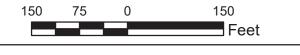

EPF


EPF

AMF

LEGEND

NOTES


- 1. GROUNDWATER ELEVATIONS MEASURED AUGUST 26, 2020.

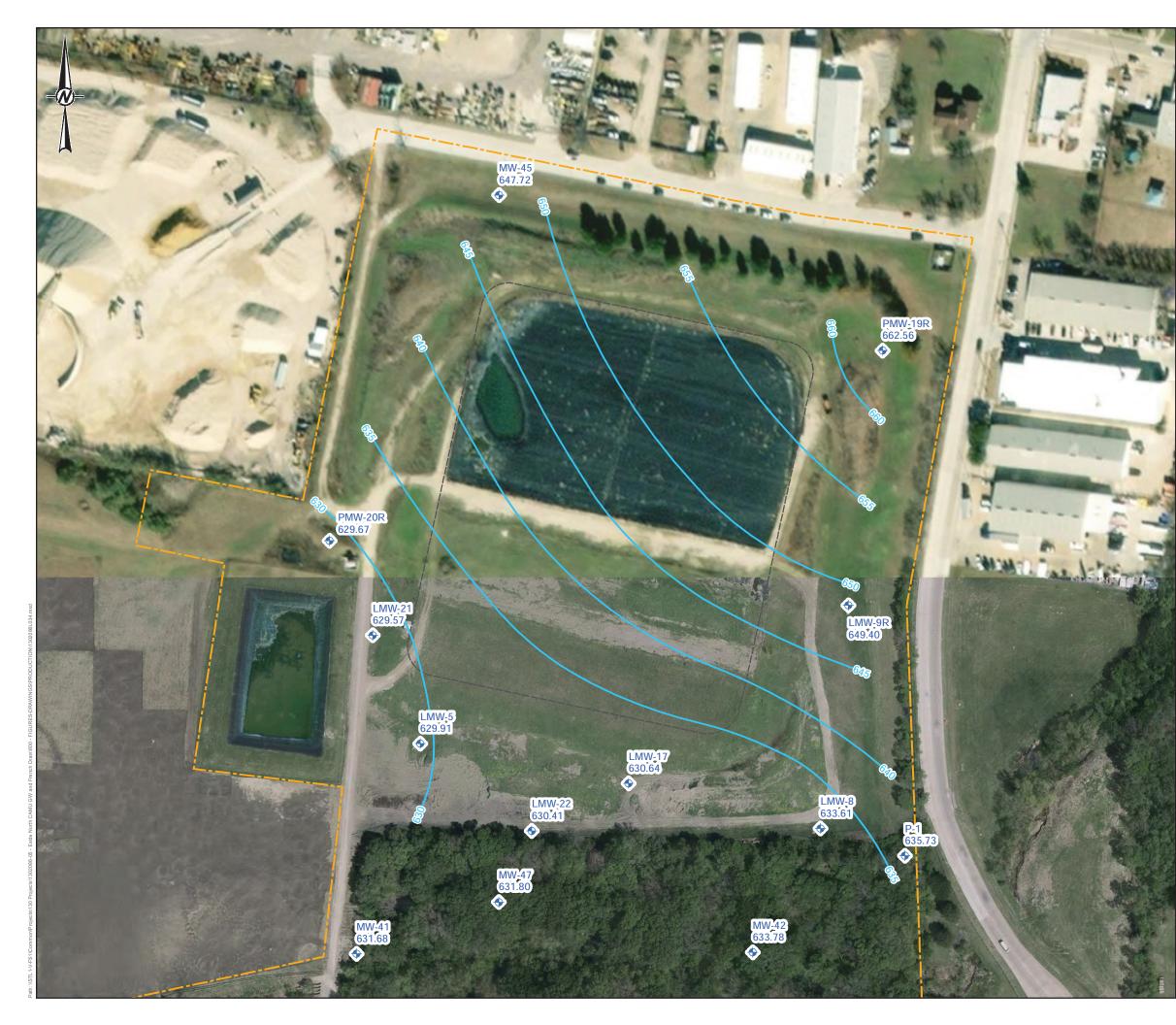
 2. MSL = MEAN SEA LEVEL
 3. CONTOUR INTERVAL = 5 FEET
 4. LMW-9 COLLAPSED AND WAS REPLACED WITH LMW-9R IN MARCH 2016 AND LMW-9 WAS SUBSEQUENTLY ABANDONED IN MAY 2017.

5. CAMU – CORRECTIVE ACTION MANAGEMENT UNIT

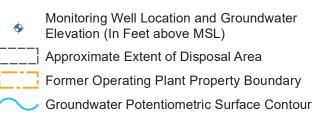
REFERENCE

1. AERIAL IMAGERY - SOURCE: ESRI, DIGITALGLOBE, GEOEYE, EARTHSTAR GEOGRAPHICS, CNES/AIRBUS DS, USDA, USGS, AEROGRID, IGN, AND THE GIS USER COMMUNITY. 2. SITE AERIAL IMAGERY - PROVIDED BY DALLAS AERIAL SURVEY, DATED APRIL, 2017.

FRISCO COMMUNITY DEVELOPMENT CORPORATION FRISCO, TX


PROJECT NORTH CAMU GROUNDWATER MONITORING

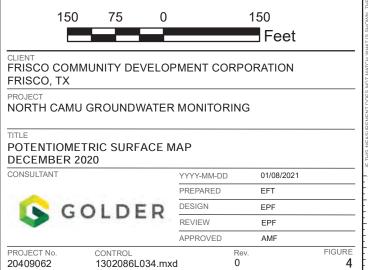
TITLE POTENTIOMETRIC SURFACE MAP AUGUST 2020


CONSULTANT

				I
YYYY-MM-DD		01/08/2021		ł
PREPARED		EFT		ŧ
DESIGN		EPF		F
REVIEW		EPF		ŧ
APPROVED		AMF		ŧ
1	Rev. 0		FIGURE	

LEGEND

NOTES


1. GROUNDWATER ELEVATIONS MEASURED DECEMBER 7, 2020.

 2. MSL = MEAN SEA LEVEL
 3. CONTOUR INTERVAL = 5 FEET
 4. LMW-9 COLLAPSED AND WAS REPLACED WITH LMW-9R IN MARCH 2016 AND LMW-9 WAS SUBSEQUENTLY ABANDONED IN MAY 2017.

5. CAMU – CORRECTIVE ACTION MANAGEMENT UNIT

REFERENCE

1. AERIAL IMAGERY - SOURCE: ESRI, DIGITALGLOBE, GEOEYE, EARTHSTAR GEOGRAPHICS, CNES/AIRBUS DS, USDA, USGS, AEROGRID, IGN, AND THE GIS USER COMMUNITY. 2. SITE AERIAL IMAGERY - PROVIDED BY DALLAS AERIAL SURVEY, DATED APRIL, 2017.

APPENDIX A Monitoring Well Inspection Forms

Monitoring Well Inspection Form

Project Name: Exide North CAMU GW Monitoring

Location: Frisco, TX

Project No.: 130-2086-05

Well No.	Date of Inspection	Is Well Easilly Identified (name written on casing) Y /N	Is Surface Completion in Good Condition Y /N	Is Well Outer Casing In Good Condition Y /N	Is Well Inner Casing In Good Condition Y /N	Is Well Secured, ie Locked Y /N	Ву	Action Required
MW-45	8-26-20	Υ.	Y	Y	Y	Y	JTB	NA
PMW-19R	1	Y	V V	V	V	Y	1	
LMW-8		y y	Y	Y Y	Ý	Ý		
LMW-17		Ý	Y	Y	Ý	Y		
LMW-5		Y	Y	Y	Y	Y		
LMW-21		Y	Y	Y	Y	Y		
PMW-20R		Y	Ý	Ý	Y	Y		
MW-47		Y	Ý	Y	Y	Y		
MW-41		Y	Y	Ý	Y	Y		
LMW-9R		Y	Y	Y	Y	y'		
LMW-22		Ý	Y	Ý	ý	Y	b	the second secon
								
	-	× .						

Monitoring Well Inspection Form

Project Name: North CAMU GW Monitoring

Location: Frisco, TX

Project No.: _____20409062

Well No.	Date of Inspection	Is Well Easilly Identified (name written on casing) Y /N	Is Surface Completion in Good Condition Y /N	Is Well Outer Casing In Good Condition Y /N	ls Well Inner Casing In Good Condition Y /N	Is Well Secured, ie Locked Y /N	Ву	Action Required
MW-45	12-7-20	WF Y	Y	Y	Y	Y	JB	NIA
PMW-19R		OK Y	Ý	Y	Y	Y	1	
LMW-8		Y	Ý	Ý	Ý	Y		
LMW-17		Y	Y	Y	Y	Y		
LMW-5		Y	Y	Y	Y	Y		
LMW-21		Y	Y	Ý	¥	Y		
PMW-20R		Y	Ý	Y	Y	Y		
MW-47		Y	Y	Ý	Y	Y		
MW-41		Ý	Ý	Y	Y	Y	1	
LMW-9R		Y	Ŷ	Y	4	Ý		
LMW-22	1	X	Y	Y	Y	Y	Þ	•
				C. Standard		-		
	/							
			-					
						-		
					11			
			-		-			
1.000			-		/	-		
								_
1								

APPENDIX B Groundwater Sampling Forms

🕟 GOLDER

Project Ref:	Exide	North CAM	U Groundwater	Monitoring		Project No. : 13	0-2086-05
WEATHER C	CONDIT	IONS	000		D - D	iner NR	
Temperat	ure	ee.m	90	_WeatherC	what,		
SAMPLE INF	ORMA	TION			0.	Ø	
		LMW-22			Sample No.	MW-22	
and the second		-27-20	2	0834	_Sample By		
Sample M	lethod _	Peristalt	ic Pump	4. 1.	_ Sample Type <u>G</u>		
Begin Purge		Water Lev	el Before Purging	: 16.51			Т ВТОС
0800				and the second se	= 1.08 gallons		
@200 "	mL/min		ater Removed Be	· · · · · · · · · · · · · · · · · · ·	1.25 gallons		
			el Before Samplir	*	FT BTO		
			el After Sampling		FT BTO	0	
		Appearance	ce of Sample:				
FIELD MEAS	SUREME	ENTS					
Pa	rameter	Units	Measurement	Measurement	Measurement	Measurement	Sample
	Time	hhmm	0814	0819	0824	0829	0834
Volume Di	scharge	gals	0.25	0.50	_0.75	1.00	1,25
	pH	Standard	6.86	6.91	6.93	6,93	6.92
Spec	c. Cond.	mS/CM	1.234	1079	1.029	1.0.36	1.041
	Turbidity		4.71	3.29	3.36	3,34	3.34
	perature		20.17	20.29	20,31	20.31	20.29
	-	mL/min	200	200	200	200	200
Wate	er Level	FT BTOC	16,82	16.01	1691	16.92	16,91
LABORATO	RY CON	TAINERS					
Sub-	1		Analysis Requeste	d	Type and Size of	Filtered	Type of
Sample	1		Analysis Requeste		Sample Container	(Yes or No)	Preservative
1	Total	Metals			1 x 120 mL Poly	ND	HNO ₃
2	Disso	lved Metals	0		1 x 120 mL Poly	Yes (0.45 µm)	HNO ₃
3	-	- 1	()				
4							
5	-						
6	-				1.		
7	1				1		
8							
REMARKS:	NO	NE					
NA = Not app	licable						
SAMPLING ME		:					
		PVC/PE	Perist	taltic Pump	Air-Lift Pump		
		Stainless St		ersible Pump	Other		
		Teflon	Hand	Pump			

🕓 GOLDER

Project Ref:	Exide N	orth CAM	U Groundwater I	Monitoring		Project No. : 1	30-2086-05
WEATHER C	and the second sec	ONS {	38°	_Weather	cloudy		
Sample D	ocation _ pate & : lethod @	LMW-9 26 - 20 Peristalt Water Lev	Time	<u>1626</u> <u>13.88</u> x 0.163 gal/FT		18 rab 32,94 F	т втос
10-	mL/min	Volume W Water Lev Water Lev	ater Removed Be el Before Samplin el After Sampling: ce of Sample:	fore Sampling: g: 	1.25 gallons	c	
FIELD MEAS	SUREME	NTS		8 (8 1), 89			
Volume Dis Spec T Temp Pun	pH c. Cond. Turbidity perature mp Rate er Level	mS/CM NTU °C mL/min FT BTOC	$\frac{Measurement}{0,25}$ $\frac{6,41}{2,714}$ $\frac{14,2}{20,61}$ $\frac{20,61}{200}$ $\frac{14,2}{14,21}$	$\frac{Measurement}{ _{0} }$ $\frac{ _{0} }{ _{0},50}$ $\frac{ _{0},7 }{ _{2},1 }$ $\frac{ _{2},1 }{ _{2}0,8 }$ $\frac{ _{0},8 }{ _{0}0}$ $\frac{ _{1}4,2 _{0}}{ _{1}4,2 _{0}}$	$\begin{array}{c c} \underline{Measurement} \\ 11.11. \\ 0.75 \\ 0.75 \\ 2.131 \\ 2.131 \\ - 20.82 \\ - 20.82 \\ - 200 \\ - 14.30 \\ \end{array}$	$\frac{Measurement}{102(} \\ 100 \\ 6.84 \\ 2.159 \\ 9.71 \\ 20186 \\ 200 \\ 14.29 \\ 14.$	Sample [626 1.25 6.83 2.141 9.68 20.87 20.87 20.87 20.87 20.87 20.87 20.87 20.87 20.87 20.87
Sub-	T		Analysis Requeste	d	Type and Size of	Filtered	Type of
Sample					Sample Container	(Yes or No)	Preservative
1	Total I				1 x 120 mL Poly	NO	HNO ₃
2	Dissol	ved Metals			1 x 120 mL Poly	Yes (0.45 μm)	HNO ₃
3							1
					and the second se		

NA = Not applicable

NONE

SAMPLING METHODS:

REMARKS:

Bailer: PVC/PE Stainless Steel Teflon Peristaltic Pump Submersible Pump Hand Pump

Air-Lift Pump Other

🕓 GOLDER

Project Ref: Exide North CAMU Groundwater Monitoring				Project No. : 130-2086-05		
WEATHER CON Temperature	()	18.	_Weather	cloudy		
SAMPLE INFOR	MATION			0		
Sample Locat	ion MW-47			Sample No	N-47	-
Sample Date		Time	1547	_Sample By _T		
Sample Metho		c Pump		Sample Type _ Gr		
Begin Purge @ 1527	Water Leve Well Volum	el Before Purging ne: 10,13 FT	x 0.163 gal/FT	FT BTOC TD: =),78 gallons	17,95	T BTOC
[@] 250 ^{mL/n}	Water Leve Water Leve	ater Removed Be el Before Samplin el After Sampling e of Sample:	ng: <u>7.46</u>	i,00 gallons FT BTOO FT BTOO و مراجع	0	
FIELD MEASUR	EMENTS					
Param	eter Units	Measurement	Measurement	Measurement	Measurement	Sample
т	ime hhmm	1532	1537	1542	1	1547
Volume Discha		0.25	0.50	0.75		1.00
	pH Standard	6.82	6.86	6.87		6,84
Spec. Co	ond. mS/CM	1.269	1,310	1,312		1,316
Turbi	idity NTU	8,62	7,12	7.17		7.19
Tempera	ture °C	20.31	20.29	20,28		20,29
Pump F	Rate mL/min	250	250	250		250
Water Le	evel FT BTOC	7.39	7.46	7.47		7.46
ABORATORY	CONTAINERS					
Sub- Sample	A	nalysis Requeste	d	Type and Size of Sample Container	Filtered (Yes or No)	Type of Preservative
1 To	Total Metals			1 x 120 mL Poly	NO	HNO ₃
2 Di	ssolved Metals			1 x 120 mL Poly	Yes (0.45 µm)	HNO ₃
3					and the second second	

NA = Not applicable SAMPLING METHODS:

REMARKS:

Bailer: PVC/PE

NONE

Stainless Steel Teflon

Peristaltic Pump	
Submersible Pump	
Hand Pump	

Air-Lift Pump Other

🕓 GOLDER

Project Ref:	Exide North CAMU Groundwater Monitoring		Project No. : 13	30-2086-05
WEATHER C	onditions 90° Weather	alada		
Temperatu	ure 90 *Weather	. cloudy		
SAMPLE INF	ocation MW-41		MW-41	
	ate 8-26-20 Time 1508	-	TB	
Sample Me	ethod Peristaltic Pump	_ Sample Type <u>Gr</u>		2.1
Begin Purge (Well Volume: 7.98 FT x 0.163 gal/FT			T BTOC
[@] 300"	hL/min Volume Water Removed Before Sampling:	2 FT BTOO FT BTOO FT BTOO	<u> </u>	
FIELD MEAS	UREMENTS			
Volume Dis Spec T Temp Pum Wate	rameterUnitsMeasurementMeasurementTimehhmm 1453 1458 schargegals 0.40 0.80 pHStandard 6.77 6.79 cond.mS/CM 1.126 1.139 urbidityNTU 6.16 5.92 erature°C 20.62 20.00 ap RatemL/min 300 300 er LevelFT BTOC 11.42 11.49	<u>Measurement</u> <u>1503</u> <u>1,20</u> <u>4,79</u> <u>1,141</u> <u>5,94</u> <u>20,17</u> <u>300</u> <u>11,53</u>		Sample 1508 1,60 6,78 1,141 5,75 20,67 300 11,52
Sub-	Analysis Requested	Type and Size of	Filtered	Type of
Sample	Provide Advector	Sample Container	(Yes or No)	Preservative
1	Total Metals	1 x 120 mL Poly	NO	HNO ₃
2	Dissolved Metals	1 x 120 mL Poly	Yes (0.45 µm)	HNO ₃
3				
4				
5				
6				
7				
8				
REMARKS:	NONE			
NA = Not appl	licable			
SAMPLING ME	THODS: Bailer: PVC/PE Peristaltic Pump Stainless Steel Submersible Pump Teflon Hand Pump	Air-Lift Pump Other		

🕟 GOLDER

Project Ref:	Exide North CAMU Groundwater Monitoring		Project No. : 130-2086-05	
WEATHER C	ure <u> </u>	UNNY	111	
Sample Lo	CORMATION DocationPMW-20R ate8-26-20Time1432 lethodPeristaltic Pump	_ Sample No P _ Sample By _ Sample Type _ <u>Gr</u>)TB	
-300	Well Volume: 9.91/FT x 0.163 gal/FT nL/min Volume Water Removed Before Sampling: Water Level Before Sampling: 18.7 Water Level After Sampling: 18.7 Appearance of Sample: 18.7	= 1,62 gallons 2,00 gallons 8 FT BTO	<u></u>	T BTOC
Pa Volume Dis Spec T Temp Pun Wate	BUREMENTS rameter Units Measurement Measurement Time hhmm 1912 1917 Scharge gals 0.40 0.80 pH Standard (e.84 6.84 Schorge ms/CM 1.129 1.136 Cond. ms/CM 12.2 9.36 Schorge °C 21.34 21.446 Schorge °C 21.34 300 Scharge °C 18.79 RY CONTAINERS KY CONTAINERS 18.79	$\begin{array}{c} \underline{Measurement} \\ 1422 \\ 1.20 \\ 0.82 \\ 1.141 \\ 8.74 \\ 21.47 \\ 300 \\ 18.81 \end{array}$	Measurement 1427 1,60 6,81 1,132 8,79 21,49 300 18,79	Sample 1432 2.00 6.82 1,133 8,91 21.48 300 18,78
Sub- Sample	Analysis Requested	Type and Size of Sample Container	Filtered (Yes or No)	Type of Preservative
1	Total Metals	1 x 120 mL Poly	NO	HNO ₃
2	Dissolved Metals	1 x 120 mL Poly	Yes (0.45 µm)	HNO ₃
3				
4			1	
5		1		
6				
7	1.0			
8			-	
REMARKS:	NONE	·		
NA = Not app	licable			
SAMPLING ME		Air-Lift Pump Other		

🕓 GOLDER

Project Ref:	Exide North CAMU Groundwater Monitoring		Project No. : 13	30-2086-05
WEATHER C		SUNNY		
SAMPLE INF	ORMATION			
Sample Lo		Sample No.		
Sample Da	ate 8-26-20 Time 349	Sample By	ITB	
Sample M	ethod Peristaltic Pump	Sample TypeG	rab	
Begin Purge 132 @300	Well Volume: <u>9,66 FT x 0.163 gal</u> nL/min Volume Water Removed Before Sampling Water Level Before Sampling:	$\frac{1}{160} \text{ gallons}$ $\frac{1}{72} \text{ FT BTO}$		T BTOC
		MO ODIN	<u> </u>	
	Appearance of Sample:	I'm oart		
	rameter <u>Units Measurement</u> <u>Measureme</u> Time hhmm <u>ໄ334</u> <u>ເ33</u> ຈ	1344	Measurement	Sample
Volume Dis				1.60
0	pH Standard 6.56 6.61 Cond. mS/CM 1.579 1.591	6.62		6.61
and a start of the		1596		1.594
	urbidity NTU <u>34.1 8.6</u> erature °C <u>21.71 21.74</u>	21.75		21.73
	$\frac{21.7}{300}$	300		300
	er Level FT BTOC 18,67 18,71	18:71		18:72
			_/	-10.7-
LABORATOR	RY CONTAINERS			· · · · · · · · · · · · · · · · · · ·
Sub-	Analysis Requested	Type and Size of	Filtered	Type of
Sample		Sample Container	(Yes or No)	Preservative
1	Total Metals	1 x 120 mL Poly	NO	HNO ₃
2	Dissolved Metals	1 x 120 mL Poly	Yes (0.45 μm)	HNO ₃
3			-	
4				
5				
6				
7		_/	· · · · · · · · · · · · · · · · · · ·	and the second
8				
REMARKS:	NONE			
NA = Not app	licable			
SAMPLING ME	THODS:			
	Bailer: PVC/PE Peristaltic Pump Stainless Steel Submersible Pump Teflon Hand Pump	Air-Lift Pump Other		

🕓 GOLDER

Project Ref: Exide North CAMU Groundwater Monitoring					Project No. : 1	30-2086-05
WEATHER COM Temperature		4°	_Weather	SUNNY		
	tion <u>LMW-5</u>	Time	- <u> </u> 3 6	Sample No. <u>L</u> Sample By <u>2</u>	TB	
Sample Meth Begin Purge @ \256	Water Level Before Purging: <u>15,97</u> Well Volume: <u>9,30 FT x 0.163 gal/F</u>				FT BTOC	
-300	Water Leve Water Leve Appearanc			FT BTO	>	
FIELD MEASUR Paran		Measurement	Measurement	Measurement	Measurement	Sample
Volume Disch Spec. C Turt Tempera Pump	Time hhmm harge gals pH Standard Cond. mS/CM bidity NTU	1301 0.40 6.93 0.717 6.92 20.61 300 16.26	1306 0,80 6,96 0,729 7,17 20,74 300 16,33	1311 1.20 6.97 0.732 7.21 20.77 300 14.35		
LABORATORY						
Sub- Sample	A	analysis Requeste	bq	Type and Size of Sample Container	Filtered (Yes or No)	Type of Preservative
1 T	otal Metals			2 x 120 mL Poly	NO	HNO ₃

1	Total Metals	2 x 120 mL Poly	NO	HNO ₃
2	Dissolved Metals	2 x 120 mL Poly	Yes (0.45 μm)	HNO ₃
3				_
4		A 7		
5				
6				-
7	2			
8			1	

REMARKS: DUP-01 collected

NA = Not applicable

SAMPLING METHODS:

Bailer: PVC/PE Stainless Steel Teflon

Peristaltic Pump	
Submersible Pump	
Hand Pump	

Air-Lift Pump

Other

🕓 GOLDER

Project Ref:	Exide North CAMU Groundwater Monitoring	Project No. : <u>130-2086-05</u>		
WEATHER C	(12)	SUNN 4		
		SUITIN		
Sample Da	ate <u>8-26-20</u> Time <u>1290</u> Time Peristaltic Pump	_ Sample NoL Sample By _ Sample TypeGr	ab	
Begin Purge (122	2 2110			T BTOC
[@] 300 "	L/min Volume Water Removed Before Sampling: Water Level Before Sampling: Water Level After Sampling: Appearance of Sample:		2	
FIELD MEAS				
Volume Dis Spec T Temp Pum Wate	ameterUnitsMeasurementMeasurementTimehhmm $ 225$ $ 230$ schargegals 0.40 0.20 pHStandard $(,71)$ $(.74)$. Cond.mS/CM 0.771 0.762 urbidityNTU $y16.71$ $y86.39$ erature°C 20.91 21.06 pRatemL/min 300 300 er LevelFT BTOC $ 8.34 $ $ 8.41 $	$\frac{Measurement}{ 235} \\ 1.20 \\ 4.71 \\ 0.761 \\ 3816.42 \\ 21.07 \\ 3000 \\ 18.45 $		Sample [240 1.60 6.71 0.764 5816.41 21.11 300 18,42
Sub- Sample	Analysis Requested	Type and Size of Sample Container	Filtered (Yes or No)	Type of Preservative
1	Total Metals	1 x 120 mL Poly	ND	HNO ₃
2	Dissolved Metals	1 x 120 mL Poly	Yes (0.45 µm)	HNO ₃
3				
4				
5	4			
6				
7				
8		ü	-	
REMARKS:	NONE			
NA = Not app SAMPLING ME		Air-Lift Pump Other		

Stainless Steel Teflon

Submersible Pump Hand Pump

🕓 GOLDER

Project Ref:	Exide North CAMU Groundwater Monitoring	Project No. : 130-2086-05
WEATHER C	ure 92° Weather	SUNNY
Sample Lo Sample D	CORMATION Decation LMW-8 ate <u>8-26-20</u> Time <u>1200</u> ethod Peristaltic Pump	Sample No <u>LMW-8</u> Sample By <u>TB</u> Sample Type _ <u>Grab</u>
Begin Purge 1134 200	Well Volume: <u>8,82 FT x 0.163 ga</u> nL/min Volume Water Removed Before Sampling: Water Level Before Sampling: <u>/5.7</u> Water Level After Sampling: <u>/5.7</u>	$\frac{FT = 1,44 \text{ gallons}}{0 \text{ gallons}}$
Pa Volume Dis Spec T Temp Pun Wate	UREMENTS rameter Units Measurement Measurement Time hhmm 1140 1145 Scharge gals 0,20 0,40 pH Standard 6,56 6,62 c. Cond. mS/CM 0,621 0,625 Curbidity NTU 7,41 4,1,1 perature °C 18,92 19,16 prop Rate mL/min 200 200 er Level FT BTOC 15,61 15,67	1150 1155 1200 0.60 0.80 1.00 6.64 6.63 6.62
Sub- Sample	Analysis Requested	Type and Size ofFilteredType ofSample Container(Yes or No)Preservative
1	Total Metals	1 x 120 mL Poly X(O HNO3
2	Dissolved Metals	1 x 120 mL Poly Yes (0.45 μm) HNO ₃
4		
5		
6		
7	A	
8		
REMARKS:	NONE	
NA = Not app SAMPLING ME		Air-Lift Pump Other

🕓 GOLDER

1844 - A. 27 M.	Exide North CAMU Groundwater Monitoring	Project No. : <u>130-2086-05</u>
WEATHER C Temperatu	ure Weather	SVNNY
SAMPLE INF	ORMATION	
	ate <u>9-26-20</u> Time <u>120</u> ethod Peristaltic Pump	Sample No <u>PMW-19R</u> Sample ByTB Sample Type <u>Grab</u>
Begin Purge (Water Level Before Purging: 18.41	FT BTOC TD: 22.70 FT BTOC
11	Appearance of Sample:	O,8 gallons B FT BTOC ·71 FT BTOC
FIELD MEAS	UREMENTS	
Volume Dis Spec T Temp Purr Wate	ameter Units Measurement Measurement Time hhmm 1105 1110 scharge gals 0.2 0.4 pH Standard 6.74 6.77 . Cond. _S/CM J.496 1.472 urbidity NTU 6.72 4.21 erature °C 19.41 19.31 op Rate mL/min 200 200 or Level FT BTOC 18.67 18.69 Analysis Requested	MeasurementMeasurementSample111511200.60.36.786.78147514764.20147619.3319.3420018.6818.6818.19Type and Size of Sample ContainerFiltered (Yes or No)Type of Preservati
1	Total Metals	1 x 120 mL Poly NO HNO ₃
2	Dissolved Metals	1 x 120 mL Poly Yes (0.45 μm) HNO ₃
3		
4		
5		
6		
7		
8		
REMARKS: NA = Not app		

SAMPLING METHODS:

Bailer: PVC/PE

Stainless Steel Teflon

Peristaltic Pump	
Submersible Pump	
Hand Pump	

Air-Lift Pump Other____

🕓 GOLDER

Project Ref:	Exide North CAMU Groundwater Monitoring	Project No. : <u>130-2086-05</u>			
WEATHER O	ure 82° Weather	SUNNY			
	FORMATION	Securit			
	ocation MW-45	Sample No.	Sample No MW-45/MS-01/MSD-01		
Sample Date 8-26-20 Time 1045		Sample By JTB			
Sample Method Peristaltic Pump		_ Sample Type _ Grab			
Begin Purge @ Water Level Before Purging: 12,98				T BTOC	
1020 Well Volume: 9,57 FT x 0.163 gal		101			
@ 25D		1.25 gallons			
	Water Level Before Sampling:				
	Water Level After Sampling: <u>3,4</u>		<u> </u>		
	Appearance of Sample:	mo odes			
	SUREMENTS	LICE WALLS	0.000.000.000	1.0.000	
Pa	rameter Units Measurement Measurement	Measurement	Measurement	Sample	
decree in	Time hhmm <u>1025</u> 1030	1035	1040	1045	
Volume Di		0.75	1.0	1,25	
-	pH Standard 7,06 7,12	7.13	7.13	7.12	
	Cond. mS/CM _0,469 _0.512	0,529	0.531	0.526	
	Turbidity NTU <u>6,74</u> <u>3,81</u> Derature °C <u>20,161</u> <u>20,72</u>	9.62	4.09	4.12	
	perature °C <u>20,61</u> <u>20,12</u> np Rate mL/min <u>250</u> <u>250</u>	20.73	250	250	
	er Level FT BTOC 13.29 13.41	12.44	13.449	13.49	
			هر		
Sub-	Analysis Requested	Type and Size of	Filtered	Type of	
Sample	Analysis Requested	Sample Container	(Yes or No)	Preservative	
1	Total Metals	1 x 120 mL Poly	NO	HNO ₃	
2	Dissolved Metals	1 x 120 mL Poly	Yes (0.45 µm)	HNO ₃	
3			1 14 - 14		
4	*				
5					
6					
7		1			
8					
REMARKS:	MS-01/MSD-01 collected.				
NA = Not app	licable				
SAMPLING ME	Bailer: PVC/PE Peristaltic Pump	Air-Lift Pump			
	Stainless Steel Submersible Pump	Other			
	Teflon Hand Pump	and the state			

🕓 GOLDER

Project Ref:	Project Ref: <u>North CAMU Groundwater Monitoring</u>					Project No. : 20409062		
WEATHER C	CONDITI	ONS 6	5°	_WeatherSU	INNY			
SAMPLE INF	ORMAT	ION						
Sample Lo	ocation _	LMW-22	2		_ Sample NoL			
Sample Da	ate <u>12</u> .	8-20	Time	0916	_Sample By	MB		
Sample M	ethod	Peristalti	c Pump		_ Sample Type _ G	rab		
Begin Purge (@0851	Water Leve Well Volum	el Before Purging	x 0.163 gal/FT	FT BTOC TD:		T BTOC	
@ <i>2</i> 00 "	nL/min	Volume Water Leve Water Leve	ater Removed Be el Before Samplin el After Sampling		1.25 gallons 12 FT BTO FT BTO	с		
FIELD MEAS	UREME	NTS						
	rameter		Measurement	Measurement	Measurement	Measurement	Sample	
	Time	hhmm	0856	10901	0906	0911	0916	
Volume Dis			,25	,50	175	1,0	1.25	
	-	Standard	6.74	6.79	6.89	6.91	6.90	
Spec	. Cond.	mS/CM	1.134	1.141	1,142	1.140	1.143	
		NTU	7.21	6.34	1,142	6.41	6.36	
Temp	perature	°C	19.31	19,46	19.47	19.51	19,50	
Pun	np Rate	mL/min	200	200	200	200	200	
Wate	er Level	FT BTOC	16.67	16.71	16.72	16.72	16.71	
LABORATOR	RY CON	TAINERS						
Sub-	T				Type and Size of	Filtered	Type of	
Sample		A	Analysis Requeste	a	Sample Container	(Yes or No)	Preservative	
1	Total N	Metals			1 x 120 mL Poly	NO	HNO ₃	
2	Dissol	ved Metals			1 x 120 mL Poly	Yes (0.45 µm)	HNO ₃	
3	K							
4							-	
	-							

NONE REMARKS:

NA = Not applicable

SAMPLING METHODS:

Bailer: PVC/PE Stainless Steel Teflon

Peristaltic Pump

Air-Lift Pump Other_

🕓 GOLDER

Project Ref:	North	CAMU Gr	roundwater Mo	nitoring		Project No. :	20409062
WEATHER C	-	ons (,5°	Weather_SU	INY		
	1. 1. 1. 1. 1.	1000					
Sample Lo					Oceando No. 11		
Sample Lo			Tim	e_1640	_ Sample NoLI		
Sample M	a second the second second				Sample By		
	and the second			11 01		and the second second	Tranks
Begin Purge (@1610	Nater Leve Nell Volum	el Before Purgin ne: 18.0 (F	g: <u> 9,91</u> T x 0.163 gal/F ⁻			ТВТОС
@ 200 n				Before Sampling: _			
				ing: 15.22			
				g: 15.22			
			e of Sample:	•			
			_				
FIELD MEAS	rameter		Magguramant	Management	Maggingmont	Magguranant	Camala
Fa		Units	Measurement		Measurement	Measurement	Sample
Malura Di	Time	hhmm	1615		1625	1630 1639	
Volume Dis	-	gals	.25		.75 6.51	1.0 1.2	
Spor		Standard mS/CM	6.34	2,829	2,674	2.679 2.67	
	Furbidity		4.34	5.16	5,17	5,21 5,29	
	perature	°C	20-41	20.46	20.41	20.42 20.4	
	np Rate		200	200	200	200 200	
	· · · · · · · · · · · · · · · · · · ·			15.16	15119	15.21 15.2.	
LABORATOR			7				
Sub-	T				Type and Size of	Filtered	Type of
Sample		A	Analysis Request	ted	Sample Container		Preservative
1	Total N	letals			1 x 120 mL Poly	NO	HNO ₃
2	Dissolv	ed Metals			1 x 120 mL Poly	Yes (0.45 µm)	HNO ₃
3							
4							
5							
6							
7							
8							1

NA = Not applicable

SAMPLING METHODS:

Bailer: PVC/PE

Teflon

Peristaltic Pump Stainless Steel Submersible Pump

Other___

Air-Lift Pump

Hand Pump

🕓 GOLDER

Project Ref: Nor	th CAMU G	roundwater Mor	nitoring		Project No. :	20409062
WEATHER CONDIT		•	_WeatherS	UNNY		
SAMPLE INFORMA	TION					
Sample Location	MW-47			Sample NoMV	V-47	
Sample Date	2-7-20	Time	1555	_Sample By _JT	2	
Sample Method _	Peristalt	ic Pump		_ Sample Type _ Gr	ab	
Begin Purge @ S30) Water Lev Well Volur	el Before Purging ne: 11,46 FT	x 0.163 gal/FT	FT BTOC TD:		T BTOC
@2SD mL/min	Volume W Water Lev	ater Removed Be	efore Sampling:	1.6 gallons	>	
	Appearance	ce of Sample:	Clery, NO	odr?		
FIELD MEASUREM	ENTS					
Paramete	r <u>Units</u>	Measurement	Measurement	Measurement	Measurement	Sample
Time	e hhmm	1535	1540	1545	1550	1555
Volume Discharge	e gals	0.3	OL	0,9	1.2	1.6
pH	Standard	6.71	6.79	6.83	6.81	6.82
Spec. Cond	. mS/CM	1.471	1.491	1.476	1.477	1,481
Turbidit	y NTU	7.61	7,21	7,21	7.26	7.31
Temperature	e °C	19.91	19,46	19.52	19,56	19,6/
Pump Rate	e mL/min	250	250	250	250	250
Water Leve	FT BTOC	6.71	6.74	6.79	6.81	6.82
LABORATORY CO	NTAINERS					
Sub- Sample	١.	Analysis Requeste	ed	Type and Size of Sample Container	Filtered (Yes or No)	Type of Preservative
						1

	Sample Container	(Yes or No)	Preservative
Total Metals	1 x 120 mL Poly	NO	HNO ₃
Dissolved Metals	1 x 120 mL Poly	Yes (0.45 µm)	HNO ₃
			•
		Total Metals 1 x 120 mL Poly	Total Metals 1 x 120 mL Poly

REMARKS:

NA = Not applicable

SAMPLING METHODS: Bailer

:	PVC/PE
	Stainless Steel
	Teflon

Peristaltic Pump

Air-Lift Pump Other_

🕓 GOLDER

Project Ref: <u>North CAMU Groundwater Monitoring</u>					Project No. :	20409062	
WEATHER CO Temperatu			D°	_Weather_SU	NN4		
SAMPLE INFO	ORMAT	ION					
Sample Loo					Sample No.	MW-41	
Sample Da	te [2.7-20	Time	1514	Sample No _Sample By	JTB	
Sample Me	thod	Peristalti	c Pump		Sample TypeGr		
Begin Purge @				x 0.163 gal/FT	FT BTOC TD: = 1.4 gallons		Т ВТОС
@300 m	L/min	Volume W	ater Removed Be	fore Sampling:	1,2 gallons	<u> </u>	
				ng: 10.6			
		Water Lev	el After Sampling	16.7	O FT BTO	<u> </u>	
		Appearance	e of Sample:	clan, mo	on		
FIELD MEASU	JREME	NTS					
Para	ameter	Units	Measurement	Measurement	Measurement	Measurement	Sample
	Time	hhmm	1459	1504	1509	1	1514
Volume Disc	charge	gals	0.3	0.6	0,9		\$1.2
	pH	Standard	A .	6.82	6.84		6.84
Spec.	Cond.	mS/CM	1.174	1.179	1.162		1.167
Т	urbidity	NTU	8.21	8.34	8.41		8.46
Tempe	erature	°C	19.21	19,34	19.39		19,41
Pum	p Rate	mL/min	300	300	300		300
Wate	r Level	FT BTOC	10,62	10.67	10.69		10.70
LABORATOR	YCON	TAINERS					
Sub-			Analysis Requeste	d	Type and Size of	Filtered	Type of
Sample			Analysis Requeste		Sample Container	(Yes or No)	Preservative
1	Total N	Metals			1 x 120 mL Poly	N.D	HNO ₃
2	Dissol	ved Metals			1 x 120 mL Poly	Yes (0.45 µm)	HNO ₃
3							
4							
5							

REMARKS:

6 7 8

NONE

NA = Not applicable

SAMPLING METHODS:

Bailer: PVC/PE Stainless Steel Teflon Peristaltic Pump Submersible Pump

Hand Pump

Air-Lift Pump

Other___

🕓 GOLDER

Project Ref:	North CAMU Groundwater Monitoring		Project No. :	20409062	
WEATHER C	ONDITIONS ure UO [®] Weather	SUNNY			
SAMPLE INF		0			
	Detation PMW-20R	Sample No			
	ate <u>12.7-20</u> Time <u>144</u> C				
	ethod Peristaltic Pump	Sample Type <u>G</u>			
Begin Purge	Well Volume: 9,84 FT x 0.163	$\frac{FT BTOC}{al/FT} = \frac{1}{a} \frac{1}{a} allons$	28.26 1	Т ВТОС	
@ 300 r	nL/min Volume Water Removed Before Sam	pling: 1,6 gallons			
	Water Level Before Sampling:				
		1001			
	Appearance of Sample:	18.71 FT BTC			
	Appearance or Sample:	, nu oua			
FIELD MEAS	UREMENTS				
Pa	rameter Units Measurement Measure	ement Measurement	Measurement	Sample	
	Time hhmm 1420 142	5 1430	1435	1440	
Volume Di			1.2	1.6	
	pH Standard 6.72 6.7		6.77	6.76	
Spec	c. Cond. mS/CM 1,072 1,00		1,071	1.067	
	Furbidity NTU 4.32 4.6		4.63	4.64	
Tem	perature °C 20.17 20,.		20.34	20,41	
	np Rate mL/min 300 300		300	300	
Wat	er Level FT BTOC 18,61 18,6		18.69	18,71	
LABORATO	RY CONTAINERS		2. S.		
Sub-		Type and Size of	Filtered	Type of	
Sample	Analysis Requested	Sample Container		Preservative	
1	Total Metals	1 x 120 mL Poly	NO	HNO ₃	
2	Dissolved Metals	1 x 120 mL Poly	Yes (0.45 µm)	HNO ₃	
3					
4					
5					
6					
7					
8					

REMARKS:

NONE

NA = Not applicable

SAMPLING METHODS:

Bailer: PVC/PE Stainless Steel Teflon Peristaltic Pump

Air-Lift Pump

Other

🕓 GOLDER

Project Ref: North	CAMU Gr	oundwater Mor	nitoring		Project No. :	20409062
WEATHER CONDITION	ons (p	0.	_Weather	NNY		1
SAMPLE INFORMAT Sample Location _ Sample Date Sample Method	LMW-21 2 -] - 20	Time	1403	Sample No Sample By Sample Type0	TB	
Begin Purge @ 343	Water Leve Well Volum	el Before Purging	x 0.163 gal/FT	FT BTOC TD	28.07 1	Т ВТОС
@ 30 °O mL/min	Volume Wa Water Leve Water Leve Appearanc	ater Removed Be el Before Samplin	efore Sampling:	1,2 gallon 7 FT BTC 9 FT BTC	s DC	
FIELD MEASUREME						O
Parameter	Units	Measurement	Measurement	Measurement	Measurement	Sample
Time	hhmm	1348	1353	1358		1403
Volume Discharge	gals	0.3	0,6	0.9		1.2
pH	Standard	6.71	6.77	6.79		6.77
Spec. Cond.	mS/CM	1.429	1,417	1.419		1.417
Turbidity	NTU	8.29	7.71	7.77		7.79
Temperature	°C	20,61	20.71	20.73		22172
Pump Rate	mL/min	300	390	300		300
Water Level	FT BTOC	18.92	18,96	18,97		18,99
LABORATORY CON	TAINERS					

Sub- Sample	Analysis Requested	Type and Size of Sample Container	Filtered (Yes or No)	Type of Preservative
1	Total Metals	1 x 120 mL Poly	ND	HNO ₃
2	Dissolved Metals	1 x 120 mL Poly	Yes (0.45 μm)	HNO ₃
3				
4				
5				
6				
7				
8				
MARKS:	NONE			

NA = Not applicable

SAMPLING METHODS:

Bailer: PVC/PE Stainless Steel Teflon Peristaltic Pump

Air-Lift Pump

Submersible Pump Hand Pump Other____

🕓 GOLDER

Project Ref:	roject Ref:North CAMU Groundwater Monitoring					Project No. :	20409062	
WEATHER C) ⁰	_Weather _ SU	VNY			
SAMPLE INF	ORMAT	ION						
Sample Lo	ocation _	LMW-5			Sample No			
Sample Da			Time	1330	_Sample By	IB		
Sample M	ethod	Peristalti	c Pump		_ Sample Type _ Gr	ab		
Begin Purge				x 0.163 gal/FT	FT BTOC TD: = 1.48 gallons		Т ВТОС	
@300 n	nL/min	Volume Wa Water Leve Water Leve	ater Removed Be el Before Samplir el After Sampling	fore Sampling: ig: : (leon	1,2 gallons 9 FT BTO 2 FT BTO	<u>c </u>		
FIELD MEAS								
Pa	rameter	Units	Measurement	Measurement	Measurement	Measurement	Sample	
	Time	hhmm	1315	1320	1325		1330	
Volume Dis	scharge		0.3	0.6	0.9		1.2	
		Standard	7.12	7.04	7.05		7.04	
Spec	. Cond.	mS/CM	0,812	0.811	0.821		0.822	
г	Turbidity	NTU	7,21	7.19	7,07		7.08	
Temp	perature	°C	19,71	19.62	17,61		19,62	
		mL/min	300	300	300		300	
Wate	er Level	FT BTOC	16.31	16.34	16:39		16.42	
LABORATO	RY CON	TAINERS				1		
Sub- Sample		A	Analysis Requeste	d	Type and Size of Sample Container	Filtered (Yes or No)	Type of Preservative	
1	Total N	Aetals			2 x 120 mL Poly	NO	HNO ₃	
2	Dissol	ved Metals			2 x 120 mL Poly	Yes (0.45 µm)	HNO ₃	
3	-		and the second second					
1				_				

Sub- Sample	Analysis Requested	Type and Size of Sample Container	Filtered (Yes or No)	Type of Preservative	
1	Total Metals	2 x 120 mL Poly	NO	HNO ₃	
2	Dissolved Metals	2 x 120 mL Poly	Yes (0.45 µm)	HNO ₃	
3					
4					
5					
6					
7					
8					

REMARKS:

DUP-01 collected

NA = Not applicable

SAMPLING METHODS:

Bailer: PVC/PE Stainless Steel Teflon

Peristaltic Pump Submersible Pump

Hand Pump

Air-Lift Pump

Other_

🕓 GOLDER

Project Ref: <u>North</u>	CAMU Gr	oundwater Mon	nitoring		Project No. :	20409062
WEATHER CONDITIO		50	_Weather	SUNNY		
SAMPLE INFORMAT	ION					
Sample Location	LMW-17		10 0	_ Sample No		
Sample Date	2-7-20	Time	255	Sample By		
Sample Method	Peristaltic	2 Pump		_ Sample Type _G	rab	
Begin Purge @ 235	Water Leve Well Volum	Before Purging	x 0.653 gal/FT			FT BTOC
@ 300 mL/min					3	
			ng: 18.3.		C	
	Water Leve	el After Sampling	18.3	2 FT BTO	the second s	
	Appearanc	e of Sample:	clea, mi	altra G		
FIELD MEASUREME		Andrea Charling and	Sale a tra final			
Parameter	Units	Measurement	Measurement	Measurement	Measurement	Sample
Time		1240	1245	1250		1255
Volume Discharge	gals	_0.6	0.9	1.2		1.6
pH	Standard	7.21	107	7.12		7,13
Spec. Cond.	mS/CM	0.796	0.812	0.816		0813
Turbidity		3.21	3.06	3.07	_/	3.09
Temperature	°C	19,86	19.94	19.96	_/	19.97
Pump Rate	mL/min	300	300	300	_/	300
Water Level	FT BTOC	18,22	18.31	18.32	_	18.32
LABORATORY CON	TAINERS					
Sub-	1	Analysis Requeste	ed	Type and Size of	Filtered	Type of

Sub- Sample	Analysis Requested	Sample Container	(Yes or No)	Preservative
1	Total Metals	1 x 120 mL Poly	NO	HNO ₃
2	Dissolved Metals	1 x 120 mL Poly	Yes (0.45 μm)	HNO ₃
3				
4				
5			/	
6				
7				
8				

REMARKS:

NONE

NA = Not applicable

SAMPLING METHODS: Bailer:

PVC/PE	
Stainless Steel	
Teflon	

Peristaltic Pump

Air-Lift Pump

Other____

🕓 GOLDER

Project Ref: _	oject Ref: North CAMU Groundwater Monitoring					Project No. : 20409062			
WEATHER CO Temperatur)°	Weather SUN	INY				
SAMPLE INFO Sample Loo Sample Da Sample Me	cation te 12 -] -	MW-8	Time	_121D	Sample NoL _Sample By _Sample Type _G	3			
Begin Purge @	2 145 Wa We L/min Volu Wa Wa	ter Leve Il Volum ume Wa ter Leve ter Leve	el Before Purging he: <u><u>8</u>94 FT ater Removed Be el Before Sampling: el After Sampling:</u>	fore Sampling:	= 1,45 gallons 1,00 gallons 0,15,51 _{FT BTO} 52 FT BTO	C	T BTOC		
Volume Disc Spec. Tu Tempo Pum	ameter <u>L</u> Time h charge pH Sta Cond. m urbidity H erature p Rate m r Level FT	J <u>nits</u> hmm gals andard S/CM NTU °C nL/min BTOC	Measurement 1150 0.2 6.71 0.634 9.21 18.91 260 15.34	$\frac{Measurement}{1155}$ 0.4 6.63 0.710 8.62 18.71 200 15.43	Measurement 1200 0.6 0.61 0.716 7.29 18,72 200 15,47	Measurement 1205 0,8 6,61 0,707 7,26 18,77 200 15,51	Sample (21D 1,00 6.59 0,701 7.31 18,78 20D 15,52		
Sub- Sample		Δ	nalysis Requeste	d	Type and Size of Sample Container	Filtered (Yes or No)	Type of Preservative		
1	Total Meta	als			1 x 120 mL Poly	NO	HNO ₃		
2	Dissolved	Metals			1 x 120 mL Poly	Yes (0.45 µm)	HNO ₃		
3									
4									
5									
6									
7							(

REMARKS:

8

NONE

NA = Not applicable

SAMPLING METHODS:

Bailer: PVC/PE Stainless Steel Teflon

Peristaltic Pump	
------------------	--

Air-Lift Pump

Other___

🕓 GOLDER

CAMU Gr	oundwater Mor	nitoring		Project No. :	20409062
	50°	_Weather	INNY		
ION					
			Sample No	MW-19R	
.7-20	Time	1150	_Sample By	NB	
Peristaltic	c Pump		_ Sample Type _ Gi	rab	
Water Leve Well Volum	el Before Purging	x 0.163 gal/FT	FT BTOC TD: = 0.5 gallons		FT BTOC
Volume Wa Water Leve	ater Removed Be el Before Samplin	efore Sampling: ng: (9.5	0,8 gallons	C	
Appearance	e of Sample:	Clean, m	o ador		
NTS					
Units	Measurement	Measurement	Measurement	Measurement	Sample
hhmm	1135	1140	1145		1150
gals	0,2	0,4	0,6		0.8
Standard	6.79	6.77	6.76		6.76
mS/CM	1.472	1.461	6471		1,472
NTU	16.21	\$4.21	14.29		14.06
°C	19.29	191,92	19.86		19,89
mL/min	200	200	200		200
FT BTOC	19,42	19.47	19,51		19.53
TAINERS			\ \		
				Filtered	Type of
	DNS PMW-19 PMW-19 Peristaltin Water Leve Water Leve Water Leve Water Leve Mater Leve Mater Leve Mater Leve Mater Leve Standard mS/CM NTU °C mL/min	DNS SO° ION PMW-19R -1-20 Time Peristaltic Pump Time Water Level Before Purging Well Volume: 3.46 FT Water Level Before Purging Well Volume: 3.46 FT Volume Water Removed Before Sampling Water Level Before Sampling Appearance of Sample: Mater Level After Sampling Appearance of Sample: NTS Units Measurement hhmm 1135 gals 0.2 Standard 6.79 mS/CM 1.472 NTU 16.21 °C 19.29 mL/min 200 FT BTOC 19.42	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Sub- Sample	Analysis Requested	Sample Container	(Yes or No)	Type of Preservative
1	Total Metals	1 x 120 mL Poly	NO	HNO ₃
2	Dissolved Metals	1 x 120 mL Poly	Yes (0.45 µm)	HNO ₃
3				
4				
5				
6				
7				
8				

REMARKS:

NONE

NA = Not applicable

SAMPLING METHODS: Bailer: F

•	PVC/PE
	Stainless Steel
	Teflon

Peristaltic Pump

Air-Lift Pump

Other____

🕓 GOLDER

Project Ref:	Project Ref: North CAMU Groundwater Monitoring					Project No. :	20409062	
WEATHER C		/	<u>IS</u> °	_Weather	SUNNY			
SAMPLE INF	ORMAT	ION						
		MW-45		1115	Sample No		D-01	
				_Sample By				
			in the second		_ Sample Type <u>Gr</u>			
Begin Purge (@ IDSD	Water Leve Well Volum	el Before Purging ne: <u>9:43</u> FT	x 0.163 gal/F			ТВТОС	
@ 250n			ater Removed Be					
			el Before Samplir					
		Water Leve	el After Sampling	3.4	6 FT BTO			
		Appearanc	e of Sample:	cloa, m	o odr			
FIELD MEAS								
Par	rameter	Units	Measurement	Measurement	Measurement	Measurement	Sample	
	Time	hhmm	1055	1100	105	IIID	1115	
Volume Dis	scharge	gals	,25	,50	175	1,0	1,25	
		Standard	7.06	7.03	7.01	7.06	7.05	
	. Cond.		0.617	0.634	0.642	0.638	0.637	
	urbidity		3.74	5112	5.27	5,11	5,34	
	perature		19.31	19,41	19,43	19,46	19,44	
	np Rate		250	250	250	250	13.46	
VVate	er Levei	FT BTOC	13.29	13.41	15.94	12.99	13,76	
LABORATOR	RY CON	TAINERS						
Sub- Sample		1	Analysis Requeste	əd	Type and Size of Sample Container	Filtered (Yes or No)	Type of Preservative	
1	Total	Metals			1 x 120 mL Poly	ND	HNO ₃	
2	Disso	lved Metals			1 x 120 mL Poly	Yes (0.45 µm)	HNO ₃	
3	-							
4								
5					1			

Sub- Sample	Analysis Requested	Type and Size of Sample Container	Filtered (Yes or No)	Type of Preservative
1	Total Metals	1 x 120 mL Poly	ND	HNO ₃
2	Dissolved Metals	1 x 120 mL Poly	Yes (0.45 μm)	HNO ₃
3				
4				
5				
6				
7				
8				-

REMARKS: MS-01/MSD-01 collected.

NA = Not applicable

SAMPLING METHODS: Baile

r:	PVC/PE
	Stainless Steel
	Teflon

Peristaltic Pump Submersible Pump

Hand Pump

Air-Lift Pump

Other_

APPENDIX C Groundwater Laboratory Analytical Results

10450 Stancliff Rd. Suite 210 Houston, TX 77099 T: +1 281 530 5656 F: +1 281 530 5887

September 04, 2020

Emily White Golder Associates 13515 Barrett Parkway Drive, Suite 260 Ballwin, MO 63021

Work Order: **HS20081252**

Laboratory Results for: Exide North CAMU Groundwater Quarterly

Dear Emily White,

ALS Environmental received 12 sample(s) on Aug 28, 2020 for the analysis presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental and for only the analyses requested. Results are expressed as "as received" unless otherwise noted.

QC sample results for this data met EPA or laboratory specifications except as noted in the Case Narrative or as noted with qualifiers in the QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained by ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

If you have any questions regarding this report, please feel free to call me.

Sincerely,

Generated By: JUMOKE.LAWAL Dane J. Wacasey

ALS Houston, US

Client:Golder AssociatesProject:Exide North CAMU Groundwater QuarterlyWorkOrder:HS20081252

TRRP Laboratory Data Package Cover Page

This data package consists of all or some of the following as applicable:

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC Chapter 5,
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
 - a) Calculated recovery (%R), andb) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,b) Calculated %R for each analyte, andc)The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits.
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) the amount of analyte measured in the duplicate,
 - b) the calculated RPD, and
 - c) the laboratory's QC limits for analytical duplicates.

R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix.

R10 Other problems or anomalies.

The Exception Report for each "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

ALS Houston, US

Client:	Golder Associates	
Project:	Exide North CAMU Groundwater Quarterly	TRRP Laboratory Data Package Cover Page
WorkOrder:	HS20081252	Fackage Cover Fage
Rele	ease Statement: I am responsible for the release of this laboratory data package. T	his laboratory is

NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory have been identified by the laboratory in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Check, if applicable: [NA] This laboratory meets an exception under 30 TAC §25.6 and was last inspected by [] TCEQ or [] ______ on (enter date of last inspection). Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Dane J. Wacasey

Page 3 of 38

		Laboratory Review Checklis	t: Reportable Data	ı				
Labo	ratory	Name: ALS Laboratory Group	LRC Date: 09/04/20)20				
			Laboratory Job Nur	nber:]	HS2008	81252		
			Prep Batch Number: 1	56856	,156866	,156906	_	
#1	A ²	Description		Yes	No	NA ³	NR ⁴	ER# ⁵
R1	OI	Chain-of-custody (C-O-C)	1 . 1 11.					
		Did samples meet the laboratory's standard conditions of san upon receipt?	ple acceptability	х				
		Were all departures from standard conditions described in an	exception report?	А				
R2	OI	Sample and quality control (QC) identification						
		Are all field sample ID numbers cross-referenced to the labor	atory ID numbers?	Х				
		Are all laboratory ID numbers cross-referenced to the corresp	oonding QC data?	Х				
R3	OI	Test reports						
		Were all samples prepared and analyzed within holding times		Х				
		Other than those results < MQL, were all other raw values br calibration standards?	acketed by	v				
		Were calculations checked by a peer or supervisor?		X X				
		Were all analyte identifications checked by a peer or supervise	sor?	X				
		Were sample detection limits reported for all analytes not det		X				
	Ĺ	Were all results for soil and sediment samples reported on a d			L	Х		
		Were % moisture (or solids) reported for all soil and sedimen	t samples?			Х		
		Were bulk soils/solids samples for volatile analysis extracted	with methanol per					
		SW-846 Method 5035?			ļ	X		
D.4		If required for the project, TICs reported?				Х		
R4	0	Surrogate recovery data Were surrogates added prior to extraction?				X		
		Were surrogate percent recoveries in all samples within the la	aboratory OC			Λ		
		limits?			Х			
R5 OI	OI	Test reports/summary forms for blank samples						
		Were appropriate type(s) of blanks analyzed?		Х				
		Were blanks analyzed at the appropriate frequency?		Х				_
		Were method blanks taken through the entire analytical proce	ess, including	37				
		preparation and, if applicable, cleanup procedures?	X X					
R6	OI	Were blank concentrations < MQL? Laboratory control samples (LCS):		X				
KU	01	Were all COCs included in the LCS?		Х				
		Was each LCS taken through the entire analytical procedure,	including prep and					
		cleanup steps?	01 1	Х				
		Were LCSs analyzed at the required frequency?		Х				
		Were LCS (and LCSD, if applicable) %Rs within the laborate		Х		_	_	
		Does the detectability data document the laboratory's capabil COCs at the MDL used to calculate the SDLs?	ity to detect the	Х				
		Was the LCSD RPD within QC limits?		А		-		+
R 7	OI	Matrix spike (MS) and matrix spike duplicate (MSD) data	9	Λ				
		Were the project/method specified analytes included in the M		Х				
	1	Were MS/MSD analyzed at the appropriate frequency?		Х	1	1	1	1
		Were MS (and MSD, if applicable) %Rs within the laborator	y QC limits?	Х				
		Were MS/MSD RPDs within laboratory QC limits?		Х				
R8	OI	Analytical duplicate data						
		Were appropriate analytical duplicates analyzed for each mat				X		
ļ		Were analytical duplicates analyzed at the appropriate freque Were RPDs or relative standard deviations within the laborat		ļ		X X		
R9	OI	Method quantitation limits (MQLs):	ory QC minits?			Λ		
11/		Are the MQLs for each method analyte included in the labora	atory data package?	Х				
		Do the MQLs correspond to the concentration of the lowest r						
		standard?		Х				
		Are unadjusted MQLs and DCSs included in the laboratory d	ata package?	Х				
R10	OI	Other problems/anomalies	4' 100 1					
		Are all known problems/anomalies/special conditions noted i ER?	n inis LRC and	v				
		Were all necessary corrective actions performed for the report	ted data?	X X		+	+	+
		Was applicable and available technology used to lower the S		Λ		+	+	+
		the matrix interference affects on the sample results?		Х				
	1	Is the laboratory NELAC-accredited under the Texas Laborat	tory Program for		1	1	1	1
		the analytes, matrices and methods associated with this labor		Х				

Labor	atory l	Laboratory Review Chee Name: ALS Laboratory Group	LRC Date: 09/04/2020					
		e: Exide North CAMU Groundwater Quarterly	Laboratory Job Numb	ber: HS	5200812	252		
Revie	wer Na	ame: Dane Wacasey	Prep Batch Number: 15					
#1	A ²	Description	Yes No NA ³ NR ⁴ ER					
S1	OI	Initial calibration (ICAL)						
		Were response factors and/or relative response factors for	each analyte within QC					
		limits?	2	X		_	_	
		Were percent RSDs or correlation coefficient criteria met		X X				_
		Was the number of standards recommended in the method		X				_
		Were all points generated between the lowest and highest calculate the curve?	standard used to	Х				
		Are ICAL data available for all instruments used?		X				-
		Has the initial calibration curve been verified using an app	propriate second source					-
		standard?	1	Х				
		Initial and continuing calibration verification (ICCV a	nd CCV) and					
S2	OI	continuing calibration blank (CCB)						
		Was the CCV analyzed at the method-required frequency?		Х				
		Were percent differences for each analyte within the meth-	od-required QC limits?	Х				
		Was the ICAL curve verified for each analyte?		Х		_		
		Was the absolute value of the analyte concentration in the	inorganic CCB < MDL?		X	_		1
S 3	0	Mass spectral tuning:		37				
		Was the appropriate compound for the method used for tu		X X				_
64	0	Were ion abundance data within the method-required QC	limits?	X				
S4	0	Internal standards (IS):	1 manufact OC limits?	X				
		Were IS area counts and retention times within the method Raw data (NELAC section 1 appendix A glossary, and se		Λ				
S 5	OI	17025 section	ction 3.12 of 150/1EC					
55	01	Were the raw data (for example, chromatograms, spectral)	data) reviewed by an					-
		analyst?		Х				
		Were data associated with manual integrations flagged on	the raw data?	X				+
S6	0	Dual column confirmation						
		Did dual column confirmation results meet the method-rec	quired QC?			Х		
S 7	0	Tentatively identified compounds (TICs):	• •					
		If TICs were requested, were the mass spectra and TIC dat checks?	ta subject to appropriate			X		
S8	Ι	Interference Check Sample (ICS) results:						
		Were percent recoveries within method QC limits?		Х				
S9	Ι	Serial dilutions, post digestion spikes, and method of st						
		Were percent differences, recoveries, and the linearity with	thin the QC limits					
		specified in the method?		Х		_		_
S10	OI	Method detection limit (MDL) studies		37				
		Was a MDL study performed for each reported analyte?		X				_
611	OI	Is the MDL either adjusted or supported by the analysis of	DCSs?	Х				
S11	01	Proficiency test reports: Was the laboratory's performance acceptable on the applic	able proficionary tests or					
		evaluation studies?	able proficiency tests of	Х				
S12	OI	Standards documentation		Λ				
	01	Are all standards used in the analyses NIST-traceable or o	btained from other					
		appropriate sources?		Х				
S13	OI	Compound/analyte identification procedures						
		Are the procedures for compound/analyte identification do	ocumented?	Х				
S14	OI	Demonstration of analyst competency (DOC)						
		Was DOC conducted consistent with NELAC Chapter 5C		Х				
		Is documentation of the analyst's competency up-to-date a	Х					
S15	OI	Verification/validation documentation for methods (NH ISO/IEC 17025 Section 5)						
		Are all the methods used to generate the data documented, where applicable?	Х					
S16	OI	Laboratory standard operating procedures (SOPs):						
		Are laboratory SOPs current and on file for each method p	performed?	Х				
-	optified k	by the letter "R" must be included in the laboratory data package subm		ort(s). Ite	ems identi	fied by the I	etter "S" sho	ould be

NR = Not Applicable, NR = Not Reviewed; R# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Review Checklist: Exception Reports							
Laboratory Name: ALS Laboratory Group LRC Date: 09/04/2020							
Project	t Name: Exide North CAMU Groundwater Quarterly	Laboratory Job Number: HS20081252					
Reviewer Name: Dane Wacasey Prep Batch Number: 156856,156866,156906							
ER# ⁵	ER# ⁵ Description						
1 See Run Log and CCB Exceptions Report.							
Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period. O = Organic Analyses; I = Inorganic Analyses (and general chemistry, when applicable); NA = Not Applicable; NR = Not Reviewed; R# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).							

FORM 13 - ANALYSIS RUN LOG

Run ID:ICPMS06_367741 Instrument:ICPMS06 Method:SW6020

Client: Golder Associates

Project: Exide North CAMU Groundwater Quarterly

WorkOrder: HS20081252

Start Date: 31-Aug-2020

End Date: 31-Aug-2020

Sample No.	D/F	Time	FileID	Analytes
ICV	1	31-Aug-2020 13:00	038_ICV.d	AS CD PB SE
LLICV2	1	31-Aug-2020 13:01	039LCV2.d	AS CD PB SE
LLICV5	1	31-Aug-2020 13:03	040LCV5.d	AS CD PB SE
ICB	1	31-Aug-2020 13:05	041_ICB.d	AS CD PB SE
ICSA	1	31-Aug-2020 13:07	042ICSA.d	AS CD PB SE
ICSAB	1	31-Aug-2020 13:09	043ICSB.d	AS CD PB SE
CCV 1	1	31-Aug-2020 13:32	053 CCV.d	AS CD PB SE
CCB 1	1	31-Aug-2020 13:34		AS CD PB SE
CCV 2	1	31-Aug-2020 13:55	065_CCV.d	AS CD PB SE
CCB 2	1	31-Aug-2020 13:56	066_CCB.d	AS CD PB SE
CCV 3	1	31-Aug-2020 14:22		AS CD PB SE
CCB 3	1	31-Aug-2020 14:24	078_CCB.d	AS CD PB SE
CCV 4	1	31-Aug-2020 14:44	085_CCV.d	AS CD PB SE
CCB 4	1	31-Aug-2020 14:46	086_CCB.d	AS CD PB SE
CCV 5	1	31-Aug-2020 15:23	095_CCV.d	AS CD PB SE
CCB 5	1	31-Aug-2020 15:31	097_CCB.d	AS CD PB SE
CCV 6	1	31-Aug-2020 16:03		AS CD PB SE
CCB 6	1	31-Aug-2020 16:05		AS CD PB SE
CCB 7	1	31-Aug-2020 16:40		AS CD PB SE
CCV 7	1	31-Aug-2020 17:09		AS CD PB SE
CCV 8	1	31-Aug-2020 17:31		AS CD PB SE
CCB 8	1	31-Aug-2020 17:32	131 CCB.d	AS CD PB SE
CCB 9	1	31-Aug-2020 17:41		AS CD PB SE
CCV 9	1	31-Aug-2020 18:04		AS CD PB SE
CCB 10	1	31-Aug-2020 18:06	144_CCB.d	AS CD PB SE
CCV 10	1	31-Aug-2020 21:54		AS CD PB SE
CCB 11	1	31-Aug-2020 21:56		AS CD PB SE
MBLK-156856	1	31-Aug-2020 21:58	151SMPL.d	AS CD PB SE
LCS-156856	1	31-Aug-2020 22:00	152SMPL.d	AS CD PB SE
MW-45	1	31-Aug-2020 22:02	153SMPL.d	AS CD PB SE
MW-45SD	5	31-Aug-2020 22:04	154SMPL.d	AS CD PB SE
MW-45MSD	1	31-Aug-2020 22:07	156SMPL.d	AS CD PB SE
MW-45PDS	1	31-Aug-2020 22:09	157SMPL.d	AS CD PB SE
CCV 11	1	31-Aug-2020 22:11	158_CCV.d	AS CD PB SE
CCB 12	1	31-Aug-2020 22:13	159_CCB.d	AS CD PB SE
PMW-19R	1	31-Aug-2020 22:15	160SMPL.d	AS CD PB SE
LMW-8	1	31-Aug-2020 22:17	161SMPL.d	AS CD PB SE
LMW-17	1	31-Aug-2020 22:19	162SMPL.d	AS CD PB SE
LMW-5	1	31-Aug-2020 22:20	163SMPL.d	AS CD PB SE
LMW-21	1	31-Aug-2020 22:22	164SMPL.d	AS CD PB SE
PMW-20R	1	31-Aug-2020 22:24	165SMPL.d	AS CD PB SE
MW-41	1	31-Aug-2020 22:26	166SMPL.d	AS CD PB SE
MW-47	1	31-Aug-2020 22:28	167SMPL.d	AS CD PB SE
CCV 12	1	31-Aug-2020 22:34	170_CCV.d	AS CD PB SE
CCB 13	1	31-Aug-2020 22:36	171_CCB.d	AS CD PB SE
CCV 13	1	31-Aug-2020 22:56	182_CCV.d	AS CD PB SE
CCB 14	1	31-Aug-2020 22:58		AS CD PB SE
CCV 14	1	31-Aug-2020 23:06		AS CD PB SE
CCB 15	1	31-Aug-2020 23:08		AS CD PB SE
LLCCV2	1	31-Aug-2020 23:12	190LCV2.d	AS CD PB SE
LLCCV5	1	31-Aug-2020 23:13	191LCV5.d	AS CD PB SE

CCB EXCEPTIONS REPORT

Client:	Golder Associates		Run ID:ICPMS06_367741			
Project:	Exide North CAMU Groundwater Qua		Instrument:ICPMS06			
WorkOrde	r: HS20081252		Method:SW6020			
CCB 11	Date: 31-Aug-2020 21:56 Seq: 5722110			D/F:	1 Units: ug/L	
	Analyte Resu			MDL	Report Limit	
	Arsenic		0.475	0.4	2	

Client:Golder AssociatesProject:Exide North CAMU Groundwater QuarterlyWork Order:HS20081252

SAMPLE SUMMARY

Lab Samp ID	Client Sample ID	Matrix	TagNo	Collection Date	Date Received	Hold
HS20081252-01	MW-45	Groundwater		26-Aug-2020 10:45	28-Aug-2020 10:30	
HS20081252-02	PMW-19R	Groundwater		26-Aug-2020 11:20	28-Aug-2020 10:30	
HS20081252-03	LMW-8	Groundwater		26-Aug-2020 12:00	28-Aug-2020 10:30	
HS20081252-04	LMW-17	Groundwater		26-Aug-2020 12:40	28-Aug-2020 10:30	
HS20081252-05	LMW-5	Groundwater		26-Aug-2020 13:16	28-Aug-2020 10:30	
HS20081252-06	LMW-21	Groundwater		26-Aug-2020 13:49	28-Aug-2020 10:30	
HS20081252-07	PMW-20R	Groundwater		26-Aug-2020 14:32	28-Aug-2020 10:30	
HS20081252-08	MW-41	Groundwater		26-Aug-2020 15:08	28-Aug-2020 10:30	
HS20081252-09	MW-47	Groundwater		26-Aug-2020 15:47	28-Aug-2020 10:30	
HS20081252-10	LMW-9R	Groundwater		26-Aug-2020 16:26	28-Aug-2020 10:30	
HS20081252-11	LMW-22	Groundwater		27-Aug-2020 08:34	28-Aug-2020 10:30	
HS20081252-12	DUP-01	Groundwater		26-Aug-2020 13:16	28-Aug-2020 10:30	

Client:	Golder Associates	ANALYTICAL REPORT
Project:	Exide North CAMU Groundwater Quarterly	WorkOrder:HS20081252
Sample ID:	MW-45	Lab ID:HS20081252-01
Collection Date:	26-Aug-2020 10:45	Matrix:Groundwater

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method	I:SW6020		Prep:SW3010A	A / 31-Aug-2020	Analyst: JHD
Arsenic	U		0.000400	0.00200	mg/L	1	31-Aug-2020 22:02
Cadmium	U		0.000200	0.00200	mg/L	1	31-Aug-2020 22:02
Lead	U		0.000600	0.00200	mg/L	1	31-Aug-2020 22:02
Selenium	0.00143	J	0.00110	0.00200	mg/L	1	31-Aug-2020 22:02
DISSOLVED METALS BY SW6020A	Meth	nod:SW6	020 (dissolved)		Prep:SW3010A	(/ 01-Sep-2020	Analyst: JHD
Arsenic	0.000558	J	0.000400	0.00200	mg/L	1	02-Sep-2020 23:56
Cadmium	U		0.000200	0.00200	mg/L	1	02-Sep-2020 23:56
Lead	U		0.000600	0.00200	mg/L	1	02-Sep-2020 23:56
Selenium	0.00120	J	0.00110	0.00200	mg/L	1	02-Sep-2020 23:56

ALS Houston, US

Client:	Golder Associates	ANALYTICAL REPORT
Project:	Exide North CAMU Groundwater Quarterly	WorkOrder:HS20081252
Sample ID:	PMW-19R	Lab ID:HS20081252-02
Collection Date:	26-Aug-2020 11:20	Matrix:Groundwater

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method	I:SW6020		Prep:SW3010A	/ 31-Aug-2020	Analyst: JHD
Arsenic	0.000631	J	0.000400	0.00200	mg/L	1	31-Aug-2020 22:15
Cadmium	U		0.000200	0.00200	mg/L	1	31-Aug-2020 22:15
Lead	U		0.000600	0.00200	mg/L	1	31-Aug-2020 22:15
Selenium	U		0.00110	0.00200	mg/L	1	31-Aug-2020 22:15
DISSOLVED METALS BY SW6020A	Meth	nod:SW6	020 (dissolved)		Prep:SW3010A	/ 01-Sep-2020	Analyst: JHD
Arsenic	0.000932	J	0.000400	0.00200	mg/L	1	03-Sep-2020 00:09
Cadmium	U		0.000200	0.00200	mg/L	1	03-Sep-2020 00:09
Lead	U		0.000600	0.00200	mg/L	1	03-Sep-2020 00:09
Selenium	0.00146	J	0.00110	0.00200	mg/L	1	03-Sep-2020 00:09

Client:	Golder Associates	ANALYTICAL REPORT
Project:	Exide North CAMU Groundwater Quarterly	WorkOrder:HS20081252
Sample ID:	LMW-8	Lab ID:HS20081252-03
Collection Date:	26-Aug-2020 12:00	Matrix:Groundwater

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method	I:SW6020		Prep:SW3010A	A / 31-Aug-2020	Analyst: JHD
Arsenic	0.000431	J	0.000400	0.00200	mg/L	1	31-Aug-2020 22:17
Cadmium	U		0.000200	0.00200	mg/L	1	31-Aug-2020 22:17
Lead	U		0.000600	0.00200	mg/L	1	31-Aug-2020 22:17
Selenium	0.0126		0.00110	0.00200	mg/L	1	31-Aug-2020 22:17
DISSOLVED METALS BY SW6020A	Meth	nod:SW6	020 (dissolved)		Prep:SW3010A	A / 01-Sep-2020	Analyst: JHD
Arsenic	0.000492	J	0.000400	0.00200	mg/L	1	03-Sep-2020 00:11
Cadmium	U		0.000200	0.00200	mg/L	1	03-Sep-2020 00:11
Lead	U		0.000600	0.00200	mg/L	1	03-Sep-2020 00:11
Selenium	0.0109		0.00110	0.00200	mg/L	1	03-Sep-2020 00:11

Client:	Golder Associates	ANALYTICAL REPORT
Project:	Exide North CAMU Groundwater Quarterly	WorkOrder:HS20081252
Sample ID:	LMW-17	Lab ID:HS20081252-04
Collection Date:	26-Aug-2020 12:40	Matrix:Groundwater

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method	I:SW6020		Prep:SW3010A	A / 31-Aug-2020	Analyst: JHD
Arsenic	U		0.000400	0.00200	mg/L	1	31-Aug-2020 22:19
Cadmium	U		0.000200	0.00200	mg/L	1	31-Aug-2020 22:19
Lead	U		0.000600	0.00200	mg/L	1	31-Aug-2020 22:19
Selenium	0.00138	J	0.00110	0.00200	mg/L	1	31-Aug-2020 22:19
DISSOLVED METALS BY SW6020A	Meth	nod:SW6	020 (dissolved)		Prep:SW3010A	/ 01-Sep-2020	Analyst: JHD
Arsenic	0.000515	J	0.000400	0.00200	mg/L	1	03-Sep-2020 00:13
Cadmium	U		0.000200	0.00200	mg/L	1	03-Sep-2020 00:13
Lead	U		0.000600	0.00200	mg/L	1	03-Sep-2020 00:13
Selenium	0.00138	J	0.00110	0.00200	mg/L	1	03-Sep-2020 00:13

Client:	Golder Associates	ANALYTICAL REPORT
Project:	Exide North CAMU Groundwater Quarterly	WorkOrder:HS20081252
Sample ID:	LMW-5	Lab ID:HS20081252-05
Collection Date:	26-Aug-2020 13:16	Matrix:Groundwater

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method	:SW6020		Prep:SW3010A	A / 31-Aug-2020	Analyst: JHD
Arsenic	U		0.000400	0.00200	mg/L	1	31-Aug-2020 22:20
Cadmium	U		0.000200	0.00200	mg/L	1	31-Aug-2020 22:20
Lead	0.00114	J	0.000600	0.00200	mg/L	1	31-Aug-2020 22:20
Selenium	U		0.00110	0.00200	mg/L	1	31-Aug-2020 22:20
DISSOLVED METALS BY SW6020A	Meth	nod:SW6	020 (dissolved)		Prep:SW3010A	A / 01-Sep-2020	Analyst: JHD
Arsenic	U		0.000400	0.00200	mg/L	1	03-Sep-2020 00:15
Cadmium	U		0.000200	0.00200	mg/L	1	03-Sep-2020 00:15
Lead	U		0.000600	0.00200	mg/L	1	03-Sep-2020 00:15
Selenium	U		0.00110	0.00200	mg/L	1	03-Sep-2020 00:15

Client:	Golder Associates	ANALYTICAL REPORT
Project:	Exide North CAMU Groundwater Quarterly	WorkOrder:HS20081252
Sample ID:	LMW-21	Lab ID:HS20081252-06
Collection Date:	26-Aug-2020 13:49	Matrix:Groundwater

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method	:SW6020		Prep:SW3010A	/ 31-Aug-2020	Analyst: JHD
Arsenic	U		0.000400	0.00200	mg/L	1	31-Aug-2020 22:22
Cadmium	U		0.000200	0.00200	mg/L	1	31-Aug-2020 22:22
Lead	0.000851	J	0.000600	0.00200	mg/L	1	31-Aug-2020 22:22
Selenium	0.00517		0.00110	0.00200	mg/L	1	31-Aug-2020 22:22
DISSOLVED METALS BY SW6020A	Meth	nod:SW6	020 (dissolved)		Prep:SW3010A	/ 01-Sep-2020	Analyst: JHD
Arsenic	0.000571	J	0.000400	0.00200	mg/L	1	03-Sep-2020 00:17
Cadmium	U		0.000200	0.00200	mg/L	1	03-Sep-2020 00:17
Lead	U		0.000600	0.00200	mg/L	1	03-Sep-2020 00:17
Selenium	0.00531		0.00110	0.00200	mg/L	1	03-Sep-2020 00:17

Client:	Golder Associates	ANALYTICAL REPORT
Project:	Exide North CAMU Groundwater Quarterly	WorkOrder:HS20081252
Sample ID:	PMW-20R	Lab ID:HS20081252-07
Collection Date:	26-Aug-2020 14:32	Matrix:Groundwater

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Metho	d:SW6020		Prep:SW3010A	A / 31-Aug-2020	Analyst: JHD
Arsenic	U		0.000400	0.00200	mg/L	1	31-Aug-2020 22:24
Cadmium	U		0.000200	0.00200	mg/L	1	31-Aug-2020 22:24
Lead	0.00119	J	0.000600	0.00200	mg/L	1	31-Aug-2020 22:24
Selenium	U		0.00110	0.00200	mg/L	1	31-Aug-2020 22:24
DISSOLVED METALS BY SW6020A	Meth	nod:SW6	020 (dissolved)		Prep:SW3010A	A / 01-Sep-2020	Analyst: JHD
Arsenic	U		0.000400	0.00200	mg/L	1	03-Sep-2020 00:19
Cadmium	U		0.000200	0.00200	mg/L	1	03-Sep-2020 00:19
Lead	U		0.000600	0.00200	mg/L	1	03-Sep-2020 00:19
Selenium	0.00112	J	0.00110	0.00200	mg/L	1	03-Sep-2020 00:19

Client:	Golder Associates	ANALYTICAL REPORT
Project:	Exide North CAMU Groundwater Quarterly	WorkOrder:HS20081252
Sample ID:	MW-41	Lab ID:HS20081252-08
Collection Date:	26-Aug-2020 15:08	Matrix:Groundwater

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method	I:SW6020		Prep:SW3010A	A / 31-Aug-2020	Analyst: JHD
Arsenic	0.000873	J	0.000400	0.00200	mg/L	1	31-Aug-2020 22:26
Cadmium	U		0.000200	0.00200	mg/L	1	31-Aug-2020 22:26
Lead	0.00123	J	0.000600	0.00200	mg/L	1	31-Aug-2020 22:26
Selenium	U		0.00110	0.00200	mg/L	1	31-Aug-2020 22:26
DISSOLVED METALS BY SW6020A	Meth	nod:SW6	020 (dissolved)		Prep:SW3010A	A / 01-Sep-2020	Analyst: JHD
Arsenic	0.000595	J	0.000400	0.00200	mg/L	1	03-Sep-2020 00:21
Cadmium	U		0.000200	0.00200	mg/L	1	03-Sep-2020 00:21
Lead	U		0.000600	0.00200	mg/L	1	03-Sep-2020 00:21
Selenium	U		0.00110	0.00200	mg/L	1	03-Sep-2020 00:21

Client:	Golder Associates	ANALYTICAL REPORT
Project:	Exide North CAMU Groundwater Quarterly	WorkOrder:HS20081252
Sample ID:	MW-47	Lab ID:HS20081252-09
Collection Date:	26-Aug-2020 15:47	Matrix:Groundwater

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method	I:SW6020		Prep:SW3010A	A / 31-Aug-2020	Analyst: JHD
Arsenic	0.000485	J	0.000400	0.00200	mg/L	1	31-Aug-2020 22:28
Cadmium	U		0.000200	0.00200	mg/L	1	31-Aug-2020 22:28
Lead	U		0.000600	0.00200	mg/L	1	31-Aug-2020 22:28
Selenium	U		0.00110	0.00200	mg/L	1	31-Aug-2020 22:28
DISSOLVED METALS BY SW6020A	Meth	nod:SW6	020 (dissolved)		Prep:SW3010A	A / 01-Sep-2020	Analyst: JHD
Arsenic	0.000455	J	0.000400	0.00200	mg/L	1	03-Sep-2020 00:23
Cadmium	U		0.000200	0.00200	mg/L	1	03-Sep-2020 00:23
Lead	U		0.000600	0.00200	mg/L	1	03-Sep-2020 00:23
Selenium	U		0.00110	0.00200	mg/L	1	03-Sep-2020 00:23

ALS Houston, US

Client:	Golder Associates	ANALYTICAL REPORT
Project:	Exide North CAMU Groundwater Quarterly	WorkOrder:HS20081252
Sample ID:	LMW-9R	Lab ID:HS20081252-10
Collection Date:	26-Aug-2020 16:26	Matrix:Groundwater

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method	I:SW6020		Prep:SW3010A	A / 31-Aug-2020	Analyst: JHD
Arsenic	0.000554	J	0.000400	0.00200	mg/L	1	03-Sep-2020 21:35
Cadmium	U		0.000200	0.00200	mg/L	1	03-Sep-2020 21:35
Lead	U		0.000600	0.00200	mg/L	1	03-Sep-2020 21:35
Selenium	U		0.00110	0.00200	mg/L	1	03-Sep-2020 21:35
DISSOLVED METALS BY SW6020A	Meth	nod:SW6	020 (dissolved)		Prep:SW3010A / 01-Sep-2020		Analyst: JHD
Arsenic	0.000662	J	0.000400	0.00200	mg/L	1	03-Sep-2020 00:25
Cadmium	U		0.000200	0.00200	mg/L	1	03-Sep-2020 00:25
Lead	U		0.000600	0.00200	mg/L	1	03-Sep-2020 00:25
Selenium	U		0.00110	0.00200	mg/L	1	03-Sep-2020 00:25

Client:	Golder Associates	ANALYTICAL REPORT
Project:	Exide North CAMU Groundwater Quarterly	WorkOrder:HS20081252
Sample ID:	LMW-22	Lab ID:HS20081252-11
Collection Date:	27-Aug-2020 08:34	Matrix:Groundwater

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method	:SW6020		Prep:SW3010A	/ 31-Aug-2020	Analyst: JHD
Arsenic	0.00932		0.000400	0.00200	mg/L	1	03-Sep-2020 21:43
Cadmium	U		0.000200	0.00200	mg/L	1	03-Sep-2020 21:43
Lead	U		0.000600	0.00200	mg/L	1	03-Sep-2020 21:43
Selenium	U		0.00110	0.00200	mg/L	1	03-Sep-2020 21:43
DISSOLVED METALS BY SW6020A	Meth	nod:SW60	SW6020 (dissolved) Prep:SV		Prep:SW3010A	/ 01-Sep-2020	Analyst: JHD
Arsenic	0.00721		0.000400	0.00200	mg/L	1	03-Sep-2020 00:27
Cadmium	U		0.000200	0.00200	mg/L	1	03-Sep-2020 00:27
Lead	U		0.000600	0.00200	mg/L	1	03-Sep-2020 00:27
Selenium	U		0.00110	0.00200	mg/L	1	03-Sep-2020 00:27

Client:	Golder Associates	ANALYTICAL REPORT
Project:	Exide North CAMU Groundwater Quarterly	WorkOrder:HS20081252
Sample ID:	DUP-01	Lab ID:HS20081252-12
Collection Date:	26-Aug-2020 13:16	Matrix:Groundwater

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method	:SW6020		Prep:SW3010A	A / 31-Aug-2020	Analyst: JHD
Arsenic	U		0.000400	0.00200	mg/L	1	03-Sep-2020 21:45
Cadmium	U		0.000200	0.00200	mg/L	1	03-Sep-2020 21:45
Lead	0.00126	J	0.000600	0.00200	mg/L	1	03-Sep-2020 21:45
Selenium	U		0.00110	0.00200	mg/L	1	03-Sep-2020 21:45
DISSOLVED METALS BY SW6020A	Meth	nod:SW6	020 (dissolved)		Prep:SW3010A	A / 01-Sep-2020	Analyst: JHD
Arsenic	0.000463	J	0.000400	0.00200	mg/L	1	03-Sep-2020 00:33
Cadmium	U		0.000200	0.00200	mg/L	1	03-Sep-2020 00:33
Lead	U		0.000600	0.00200	mg/L	1	03-Sep-2020 00:33
Selenium	U		0.00110	0.00200	mg/L	1	03-Sep-2020 00:33

Weight / Prep Log

Client:Golder AssociatesProject:Exide North CAMU Groundwater QuarterlyWorkOrder:HS20081252

Batch ID: 156856	Start Date	: 31 Aug 202	20 09:00	End Date: 31 Aug 2020 13:00	
Method: WATER - SW301	0A				Prep Code: 3010A
Sample ID	Container	Sample Wt/Vol	Final Volume	Prep Factor	
HS20081252-01		10 (mL)	10 (mL)	1	
HS20081252-02		10 (mL)	10 (mL)	1	
HS20081252-03		10 (mL)	10 (mL)	1	
HS20081252-04		10 (mL)	10 (mL)	1	
HS20081252-05		10 (mL)	10 (mL)	1	
HS20081252-06		10 (mL)	10 (mL)	1	
HS20081252-07		10 (mL)	10 (mL)	1	
HS20081252-08		10 (mL)	10 (mL)	1	
HS20081252-09		10 (mL)	10 (mL)	1	
Batch ID: 156866		Start Date	: 31 Aug 202	20 12:00	End Date: 31 Aug 2020 15:00
Method: WATER - SW301	0A				Prep Code: 3010A
Sample ID	Container	Sample Wt/Vol	Final Volume	Prep Factor	
HS20081252-10		10 (mL)	10 (mL)	1	
HS20081252-11		10 (mL)	10 (mL)	1	
HS20081252-12		10 (mL)	10 (mL)	1	
Batch ID: 156906		Start Date	: 01 Sep 202	20 10:00	End Date: 01 Sep 2020 14:00
Method: DISS METALS PI	REP - WATEF	R - SW3010A			Prep Code: 3010A DISS
Sample ID	Container	Sample Wt/Vol	Final Volume	Prep Factor	
HS20081252-01		10 (mL)	10 (mL)	1	
HS20081252-02		10 (mL)	10 (mL)	1	
HS20081252-03		10 (mL)	10 (mL)	1	
HS20081252-04		10 (mL)	10 (mL)	1	
HS20081252-05		10 (mL)	10 (mL)	1	
HS20081252-06		10 (mL)	10 (mL)	1	
HS20081252-07		10 (mL)	10 (mL)	1	
HS20081252-08		10 (mL)	10 (mL)	1	
HS20081252-09		10 (mL)	10 (mL)	1	
HS20081252-10		10 (mL)	10 (mL)	1	
HS20081252-11		10 (mL)	10 (mL)	1	
HS20081252-12		10 (mL)	10 (mL)	1	

=

DATES REPORT

Client:	Golder Associates
Project:	Exide North CAMU Groundwater Quarterly
WorkOrder:	HS20081252

Sample ID	Client Sam	p ID Collection Date	Leachate Date	Prep Date	Analysis Date	DF
Batch ID: 156856	6(0)	Test Name : ICP-MS METALS BY S	W6020A		Matrix: Groundwa	ater
HS20081252-01	MW-45	26 Aug 2020 10:45		31 Aug 2020 13:00	31 Aug 2020 22:02	1
HS20081252-02	PMW-19R	26 Aug 2020 11:20		31 Aug 2020 13:00	31 Aug 2020 22:15	1
HS20081252-03	LMW-8	26 Aug 2020 12:00		31 Aug 2020 13:00	31 Aug 2020 22:17	1
HS20081252-04	LMW-17	26 Aug 2020 12:40		31 Aug 2020 13:00	31 Aug 2020 22:19	1
HS20081252-05	LMW-5	26 Aug 2020 13:16		31 Aug 2020 13:00	31 Aug 2020 22:20	1
HS20081252-06	LMW-21	26 Aug 2020 13:49		31 Aug 2020 13:00	31 Aug 2020 22:22	1
HS20081252-07	PMW-20R	26 Aug 2020 14:32		31 Aug 2020 13:00	31 Aug 2020 22:24	1
HS20081252-08	MW-41	26 Aug 2020 15:08		31 Aug 2020 13:00	31 Aug 2020 22:26	1
HS20081252-09	MW-47	26 Aug 2020 15:47		31 Aug 2020 13:00	31 Aug 2020 22:28	1
Batch ID: 156866	6(0)	Test Name : ICP-MS METALS BY S	W6020A		Matrix: Groundw	ater
HS20081252-10	LMW-9R	26 Aug 2020 16:26		31 Aug 2020 15:00	03 Sep 2020 21:35	1
HS20081252-11	LMW-22	27 Aug 2020 08:34		31 Aug 2020 15:00	03 Sep 2020 21:43	1
HS20081252-12	DUP-01	26 Aug 2020 13:16		31 Aug 2020 15:00	03 Sep 2020 21:45	1
Batch ID: 156906	6(0)	Test Name : DISSOLVED METALS	BY SW6020A		Matrix: Groundw	ater
HS20081252-01	MW-45	26 Aug 2020 10:45		01 Sep 2020 14:00	02 Sep 2020 23:56	1
HS20081252-02	PMW-19R	26 Aug 2020 11:20		01 Sep 2020 14:00	03 Sep 2020 00:09	1
HS20081252-03	LMW-8	26 Aug 2020 12:00		01 Sep 2020 14:00	03 Sep 2020 00:11	1
HS20081252-04	LMW-17	26 Aug 2020 12:40		01 Sep 2020 14:00	03 Sep 2020 00:13	1
HS20081252-05	LMW-5	26 Aug 2020 13:16		01 Sep 2020 14:00	03 Sep 2020 00:15	1
HS20081252-06	LMW-21	26 Aug 2020 13:49		01 Sep 2020 14:00	03 Sep 2020 00:17	1
HS20081252-07	PMW-20R	26 Aug 2020 14:32		01 Sep 2020 14:00	03 Sep 2020 00:19	1
HS20081252-08	MW-41	26 Aug 2020 15:08		01 Sep 2020 14:00	03 Sep 2020 00:21	1
HS20081252-09	MW-47	26 Aug 2020 15:47		01 Sep 2020 14:00	03 Sep 2020 00:23	1
HS20081252-10	LMW-9R	26 Aug 2020 16:26		01 Sep 2020 14:00	03 Sep 2020 00:25	1
HS20081252-11	LMW-22	27 Aug 2020 08:34		01 Sep 2020 14:00	03 Sep 2020 00:27	1
HS20081252-12	DUP-01	26 Aug 2020 13:16		01 Sep 2020 14:00	03 Sep 2020 00:33	1

	Order: umentID:	HS20081252 ICPMS06				METHOD DETECTION / REPORTING LIMITS				
	Code:	ICP_DISS								
Test	Number:	SW6020 (dissolved)		Matrix: Aqueous	s Units: mg/L					
Test	Name:	Dissolved Metals by SW	6020A		•					
Туре	Analyte		CAS	DCS Spike	DCS	MDL	PQL			
А	Arsenic		7440-38-2	0.00100	0.000928	0.000400	0.00200			
А	Cadmium		7440-43-9	0.000500	0.000488	0.000200	0.00200			
А	Lead		7439-92-1	0.00100	0.000946	0.000600	0.00200			
А	Selenium		7782-49-2	0.00250	0.00253	0.00110	0.00200			

Selenium

А

0.00200

0.00110

Work	Order:	HS20081252				METHO	D DETEC	TION /
Instru	umentID:	ICPMS06				REPO	RTING LI	MITS
Test	Code:	ICP_TW						
Test	Number:	SW6020		Matrix: Aqu	Jeous	Units:	mg/L	
Test	Name:	ICP-MS Metals by SW6020A		Matrix: Age	00003	Units:	mg/L	
Туре	Analyte		CAS	DCS Spi	ike DC	S	MDL	PQL
А	Arsenic		7440-38-2	0.001	00 0.00092	28 0.	000400	0.00200
A	Cadmium		7440-43-9	0.0005	0.00048	38 0.	000200	0.00200
А	Lead		7439-92-1	0.001	00 0.00094	16 0.	000600	0.00200

0.00250

0.00253

7782-49-2

Client:Golder AssociatesProject:Exide North CAMU Groundwater QuarterlyWorkOrder:HS20081252

Batch ID:	156856 (0)	Inst	rument:	ICPMS06	Me	ethod: I	CP-MS MET	ALS BY SWE	020A
MBLK	Sample ID:	MBLK-156856		Units:	mg/L	Ana	alysis Date:	31-Aug-2020	21:58
Client ID:		R	un ID: ICPN	IS06_367741	SeqNo: 5	722111	PrepDate:	31-Aug-2020	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Arsenic		0.000408	0.00200						
Cadmium		U	0.00200						
Lead		U	0.00200						
Selenium		U	0.00200						
LCS	Sample ID:	LCS-156856		Units:	mg/L	Ana	alysis Date:	31-Aug-2020) 22:00
Client ID:		R	un ID: ICPN	IS06_367741	SeqNo: 5	722066	PrepDate:	31-Aug-2020	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Arsenic		0.05002	0.00200	0.05	0	100	80 - 120		
Cadmium		0.04863	0.00200	0.05	0	97.3	80 - 120		
Lead		0.04536	0.00200	0.05	0	90.7	80 - 120		
Selenium		0.0507	0.00200	0.05	0	101	80 - 120		
MS	Sample ID:	HS20081252-01M	3	Units:	mg/L	Ana	alysis Date:	01-Sep-2020	12:56
Client ID:	MW-45	R	un ID: ICPN	IS06_367812	SeqNo: 5	722731	PrepDate:	31-Aug-2020	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Arsenic		0.0517	0.00200	0.05	0	103	80 - 120		
Cadmium		0.04887	0.00200	0.05	0	97.7	80 - 120		
Lead		0.05019	0.00200	0.05	0	100	80 - 120		
Selenium		0.05405	0.00200	0.05	0.001433	105	80 - 120		
MSD	Sample ID:	HS20081252-01M	SD	Units:	mg/L	Ana	alysis Date:	31-Aug-2020	22:07
Client ID:	MW-45	R	un ID: ICPN	IS06_367741	SeqNo: 5	722070	PrepDate:	31-Aug-2020	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Arsenic		0.04956	0.00200	0.05	0	99.1	80 - 120	0.0517	4.23 20
Cadmium		0.046	0.00200	0.05	0	92.0	80 - 120	0.04887	6.05 20
Lead		0.04699	0.00200	0.05	0	94.0	80 - 120	0.05019	6.59 20
Selenium		0.05102	0.00200	0.05	0.001433	99.2	80 - 120	0.05405	5.76 20

Client:Golder AssociatesProject:Exide North CAMU Groundwater QuarterlyWorkOrder:HS20081252

Batch ID: 156856 (0) Method: ICP-MS METALS BY SW6020A Instrument: ICPMS06 PDS HS20081252-01PDS Analysis Date: 31-Aug-2020 22:09 Sample ID: Units: mg/L Client ID: MW-45 SeqNo: 5722071 PrepDate: 31-Aug-2020 Run ID: ICPMS06_367741 DF: 1 SPK Ref RPD Ref Control RPD Analyte Result MQL SPK Val Value %REC Limit Value %RPD Limit Qual Arsenic 0.1102 0.00200 0.1 0.000374 110 75 - 125 0.00200 Cadmium 0.1053 0.1 -0.000005 105 75 - 125 Lead 0.1054 0.00200 0.1 0.000138 105 75 - 125 Selenium 0.1115 0.00200 0.1 0.001433 110 75 - 125 SD Sample ID: HS20081252-01SD Units: mg/L Analysis Date: 31-Aug-2020 22:04 Client ID: MW-45 Run ID: ICPMS06 367741 SeqNo: 5722068 PrepDate: 31-Aug-2020 DF: 5 SPK Ref RPD Ref Control %D Analyte Result MQL SPK Val Value %REC Limit Value %D Limit Qual U 0.0100 0.000374 0 10 Arsenic 0.0100 Cadmium U -0.000005 0 10 0.0100 Lead U 0.000138 0 10 Selenium U 0.0100 0.001433 0 10 HS20081252-02 The following samples were analyzed in this batch: HS20081252-01 HS20081252-03 HS20081252-04 HS20081252-05 HS20081252-06 HS20081252-07 HS20081252-08 HS20081252-09

Client:Golder AssociatesProject:Exide North CAMU Groundwater QuarterlyWorkOrder:HS20081252

Batch ID:	156866 (0)	Inst	rument:	ICPMS06	Me	ethod: I	CP-MS MET	ALS BY SW6	020A
MBLK	Sample ID:	MBLK-156866		Units:	mg/L	Ana	alysis Date:	04-Sep-2020	13:35
Client ID:		R	un ID: ICPN	IS06_368031	SeqNo: 5	727312	PrepDate:	31-Aug-2020	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Arsenic		U	0.00200						
Cadmium		U	0.00200						
Lead		U	0.00200						
Selenium		U	0.00200						
LCS	Sample ID:	LCS-156866		Units:	mg/L	Ana	alysis Date:	03-Sep-2020	20:46
Client ID:		R	un ID: ICPN	IS06_367963	SeqNo: 5	726112	PrepDate:	31-Aug-2020	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Arsenic		0.05042	0.00200	0.05	0	101	80 - 120		
Cadmium		0.05215	0.00200	0.05	0	104	80 - 120		
Lead		0.04956	0.00200	0.05	0	99.1	80 - 120		
Selenium		0.0513	0.00200	0.05	0	103	80 - 120		
MS	Sample ID:	HS20081272-04MS	6	Units:	mg/L	Ana	alysis Date:	04-Sep-2020	13:37
Client ID:		R	un ID: ICPN	1S06_368031	SeqNo: 5	727313	PrepDate:	31-Aug-2020	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Arsenic		0.05165	0.00200	0.05	0.000583	102	80 - 120		
Cadmium		0.0503	0.00200	0.05	0.000011	101	80 - 120		
Lead		0.05003	0.00200	0.05	0.000215	99.6	80 - 120		
Selenium		0.05053	0.00200	0.05	0.001439	98.2	80 - 120		
MSD	Sample ID:	HS20081272-04MS	SD	Units:	mg/L	Ana	alysis Date:	03-Sep-2020	20:54
Client ID:		R	un ID: ICPN	IS06_367963	SeqNo: 5	726116	PrepDate:	31-Aug-2020	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Arsenic		0.04835	0.00200	0.05	0.000583	95.5	80 - 120	0.05165	6.6 20
Cadmium		0.04674	0.00200	0.05	0	93.5	80 - 120	0.0503	7.35 20
Lead		0.04754	0.00200	0.05	0	95.1	80 - 120	0.05003	5.11 20
Selenium		0.04643	0.00200	0.05	0.001439	90.0	80 - 120	0.05053	8.47 20

Client:Golder AssociatesProject:Exide North CAMU Groundwater QuarterlyWorkOrder:HS20081252

Batch ID: 156866 (0) Method: ICP-MS METALS BY SW6020A Instrument: ICPMS06 PDS Sample ID: HS20081272-04PDS Analysis Date: 03-Sep-2020 20:56 Units: mg/L Client ID: Run ID: ICPMS06_367963 SeqNo: 5726117 PrepDate: 31-Aug-2020 DF: 1 SPK Ref RPD Ref Control RPD Analyte Result MQL SPK Val Value %REC Limit Value %RPD Limit Qual Arsenic 0.1003 0.00200 0.1 0.000583 99.7 75 - 125 Cadmium 0.09598 0.00200 0.1 0.000011 96.0 75 - 125 Lead 0.09815 0.00200 0.1 0.000215 97.9 75 - 125 Selenium 0.09718 0.00200 0.1 0.001439 95.7 75 - 125 SD Sample ID: HS20081272-04SD Units: mg/L Analysis Date: 03-Sep-2020 20:50 Client ID: Run ID: ICPMS06_367963 SeqNo: 5726114 PrepDate: 31-Aug-2020 DF: 5 SPK Ref RPD Ref Control %D Analyte Result MQL SPK Val Value %REC Limit Value %D Limit Qual U 0.0100 0.000583 0 10 Arsenic Cadmium 0.0100 U 0.000011 0 10 Lead 0.0100 U 0.000215 0 10 Selenium U 0.0100 0.001439 0 10 The following samples were analyzed in this batch: HS20081252-10 HS20081252-11 HS20081252-12

Client:Golder AssociatesProject:Exide North CAMU Groundwater QuarterlyWorkOrder:HS20081252

Batch ID:	156906 (0)	Inst	trument:	ICPMS06	M		DISSOLVED	METALS BY))	SW6020A
MBLK	Sample ID:	MBLK-156906		Units:	mg/L	Ana	alysis Date:	03-Sep-2020) 14:14
Client ID:		R	un ID: ICPI	MS06_367963	SeqNo: 5	725654	PrepDate:	01-Sep-2020	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit		RPD %RPD Limit Qual
Arsenic		U	0.00200						
Cadmium		U	0.00200						
Lead		U	0.00200						
Selenium		U	0.00200						
LCS	Sample ID:	LCS-156906		Units:	mg/L	Ana	alysis Date:	02-Sep-2020	23:54
Client ID:		R	un ID: ICPI	MS06_367868	SeqNo: 5	724528	PrepDate:	01-Sep-2020	
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Arsenic		0.04797	0.00200	0.05	0	95.9	80 - 120		
Cadmium		0.04978	0.00200	0.05	0	99.6	80 - 120		
Lead		0.04914	0.00200	0.05	0	98.3	80 - 120		
Selenium		0.04961	0.00200	0.05	0	99.2	80 - 120		
MS	Sample ID:	HS20081252-01M	S	Units:	mg/L	Ana	alysis Date:	03-Sep-2020	00:00
Client ID:	MW-45	R	un ID: ICPI	MS06_367868	SeqNo: 5	724532	PrepDate:	01-Sep-2020	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Arsenic		0.04985	0.00200	0.05	0.000558	98.6	75 - 125		
Cadmium		0.05069	0.00200	0.05	0.000009	101	75 - 125		
Lead		0.05145	0.00200	0.05	0.000175	103	75 - 125		
Selenium		0.05112	0.00200	0.05	0.001204	99.8	75 - 125		
MSD	Sample ID:	HS20081252-01M	SD	Units:	mg/L	Ana	alysis Date:	03-Sep-2020	00:02
Client ID:	MW-45	R	un ID: ICPI	MS06_367868	SeqNo: 5	724533	PrepDate:	01-Sep-2020	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit		RPD %RPD Limit Qual
Arsenic		0.05053	0.00200	0.05	0.000558	100.0	75 - 125	0.04985	1.37 20
Cadmium		0.05001	0.00200	0.05	0.000009	100.0	75 - 125	0.05069	1.35 20
Lead		0.05218	0.00200	0.05	0.000175	104	75 - 125	0.05145	1.41 20
Selenium		0.0516	0.00200	0.05	0.001204	101	75 - 125	0.05112	0.923 20

Client:Golder AssociatesProject:Exide North CAMU Groundwater QuarterlyWorkOrder:HS20081252

Batch ID:	156906 (0)	Instru	ument:	ICPMS06	М	emou.	DISSOLVED	METALS BY	SW602	0A
PDS	Sample ID:	HS20081252-01PD	6	Units:	mg/L	Ana	alysis Date:	03-Sep-2020	00:04	
Client ID:	MW-45	Ru	n ID: ICPN	/IS06_367868	SeqNo: 5	5724534	PrepDate:	01-Sep-2020	DF	:1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit Qual
Arsenic		0.1008	0.00200	0.1	0.000558	100	75 - 125			
Cadmium		0.1028	0.00200	0.1	0.000009	103	75 - 125			
Lead		0.1039	0.00200	0.1	0.000175	104	75 - 125			
Selenium		0.1036	0.00200	0.1	0.001204	102	75 - 125			
SD	Sample ID:	HS20081252-01SD		Units:	mg/L	Ana	alysis Date:	02-Sep-2020	23:58	
Client ID:	MW-45	Ru	n ID: ICPN	/IS06_367868	SeqNo: 5	5724530	PrepDate:	01-Sep-2020	DF	: 5
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%D	%D Limit Qual
Arsenic		U	0.0100					0.000558		0 10
Cadmium		U	0.0100					0.000009		0 10
Lead		U	0.0100					0.000175		0 10
Selenium		U	0.0100					0.001204		0 10
The followin	g samples were analyze		81252-01 81252-05 81252-09	HS2008125 HS2008125 HS2008125	52-06	HS200812 HS200812 HS200812	52-07	HS20081252- HS20081252- HS20081252-	08	

QC BATCH REPORT

ALS Houston, US

Client: Project: WorkOrder:	Golder Associates Exide North CAMU Groundwater Quarterly HS20081252	QUALIFIERS, ACRONYMS, UNITS
Qualifier	Description	
	Value exceeds Regulatory Limit	
1	Not accredited	
3	Analyte detected in the associated Method Blank above the Reporting Limit	
E	Value above quantitation range	
4	Analyzed outside of Holding Time	
I	Analyte detected below quantitation limit	
Л	Manually integrated, see raw data for justification	
ı	Not offered for accreditation	
ND	Not Detected at the Reporting Limit	
C	Sample amount is > 4 times amount spiked	
0	Dual Column results percent difference > 40%	
र	RPD above laboratory control limit	
6	Spike Recovery outside laboratory control limits	
J	Analyzed but not detected above the MDL/SDL	
Acronym	Description	
DCS	Detectability Check Study	
DUP	Method Duplicate	
CS	Laboratory Control Sample	
CSD	Laboratory Control Sample Duplicate	
//BLK	Method Blank	
//DL	Method Detection Limit	
/IQL	Method Quantitation Limit	
//S	Matrix Spike	
ASD	Matrix Spike Duplicate	
PDS	Post Digestion Spike	
PQL	Practical Quantitaion Limit	
SD	Serial Dilution	
SDL	Sample Detection Limit	
RRP	Texas Risk Reduction Program	

CERTIFICATIONS, ACCREDITATIONS & LICENSES

Agency	Number	Expire Date
Arkansas	20-030-0	26-Mar-2021
California	2919, 2020-2021	30-Apr-2021
Dept of Defense	PJLA L20-507	22-Dec-2021
Florida	E87611-30-07/01/2020	30-Jun-2021
Illinois	2000322020-4	09-May-2021
Kansas	E-10352 2020-2021	31-Jul-2021
Kentucky	123043, 2020-2021	30-Apr-2021
Louisiana	03087, 2020-2021	30-Jun-2021
Maryland	343, 2019-2020	30-Sep-2020
North Carolina	624-2020	31-Dec-2020
North Dakota	R-193 2020-2021	30-Apr-2021
Texas	T104704231-20-26	30-Apr-2021

Client:Golder AssociatesProject:Exide North CAMU Groundwater QuarterlyWork Order:HS20081252

SAMPLE TRACKING

Lab Samp ID	Client Sample ID	Action	Date	Person	New Location
HS20081252-01	MW-45	Login	8/28/2020 5:15:50 PM	PMG	Disposed
HS20081252-01	MW-45	Login	8/28/2020 5:15:50 PM	PMG	Disposed
HS20081252-02	PMW-19R	Login	8/28/2020 5:15:50 PM	PMG	Disposed
HS20081252-02	PMW-19R	Login	8/28/2020 5:15:50 PM	PMG	Disposed
HS20081252-03	LMW-8	Login	8/28/2020 5:15:50 PM	PMG	Disposed
HS20081252-03	LMW-8	Login	8/28/2020 5:15:50 PM	PMG	Disposed
HS20081252-04	LMW-17	Login	8/28/2020 5:15:50 PM	PMG	Disposed
HS20081252-04	LMW-17	Login	8/28/2020 5:15:50 PM	PMG	Disposed
HS20081252-05	LMW-5	Login	8/28/2020 5:15:50 PM	PMG	Disposed
HS20081252-05	LMW-5	Login	8/28/2020 5:15:50 PM	PMG	Disposed
HS20081252-06	LMW-21	Login	8/28/2020 5:15:50 PM	PMG	Disposed
HS20081252-06	LMW-21	Login	8/28/2020 5:15:50 PM	PMG	Disposed
HS20081252-07	PMW-20R	Login	8/28/2020 5:15:50 PM	PMG	Disposed
HS20081252-07	PMW-20R	Login	8/28/2020 5:15:50 PM	PMG	Disposed
HS20081252-08	MW-41	Login	8/28/2020 5:15:50 PM	PMG	Disposed
HS20081252-08	MW-41	Login	8/28/2020 5:15:50 PM	PMG	Disposed
HS20081252-09	MW-47	Login	8/28/2020 5:15:50 PM	PMG	Disposed
HS20081252-09	MW-47	Login	8/28/2020 5:15:50 PM	PMG	Disposed
HS20081252-10	LMW-9R	Login	8/28/2020 5:15:50 PM	PMG	Disposed
HS20081252-10	LMW-9R	Login	8/28/2020 5:15:50 PM	PMG	Disposed
HS20081252-11	LMW-22	Login	8/28/2020 5:15:50 PM	PMG	Disposed
HS20081252-11	LMW-22	Login	8/28/2020 5:15:50 PM	PMG	Disposed
HS20081252-12	DUP-01	Login	8/28/2020 5:15:50 PM	PMG	Disposed
HS20081252-12	DUP-01	Login	8/28/2020 5:15:50 PM	PMG	Disposed

					Sample Receipt Checklist
Work Order ID:	HS20081252		Date	/Time Received:	<u>28-Aug-2020 10:30</u>
Client Name:	Golder St Louis		Rece	eived by:	Paresh M. Giga
Completed By:	/S/ Paresh M. Giga	28-Aug-2020 17:25	Reviewed by: /S	/ Dane J. Wacase	y 31-Aug-2020 13:27
	eSignature	Date/Time		eSignature	Date/Time
Matrices:	<u>GW</u>		Carrier name:	<u>FedEx</u>	
Custody seals in Custody seals in VOA/TX1005/T2 Chain of custod Chain of custod Samplers name Chain of custod Samples in prop Sample contain Sufficient samp All samples reco	y signed when relinquished and r present on COC? y agrees with sample labels? per container/bottle?	ed vials? eceived?	Yes Yes Yes Yes Yes Yes Yes Yes	No	Not Present Not Present Not Present Not Present 2 Page(s) COC IDs:224856/224855
	/Thermometer(s):		1.3°C U/C		IR31
Cooler(s)/Kit(s):			46309		
Water - VOA via	ole(s) sent to storage: als have zero headspace? eptable upon receipt?		8/282020 17:40 Yes Yes Yes Yes	No No No	No VOA vials submitted
Client Contacte	d:	Date Contacted:		Person Cont	tacted:
Contacted By:		Regarding:			
Comments:					
Corrective Actic	n:				

N

-.....инац, ил +1 513 733 5336 Everett, WA +1 425 356 2600

Fort Collins, CO +1 970 490 1511 Holland, MI +1 616 399 6070

Chain of Custody Form

 Page / of Z

 coc ID: 224856

Houstan, T.A. +1 281 530 5656 Middletown, PA +1 717 944 5541

Salt £ake נייז. +1 801 266 7700

		·	AI S Decima		
			Designed and the second	manager:	AI S Work Order #
Purchase Order	130-2036-01		rruject Information		Parameter/Method Brannet
Work Order		Project Name	-Exide North CANU GW Quarterly	 	A ICP TRANSFORMA THE INTERNATION REQUEST FOR Analysis
Company Name	Golder Associates	Project Number	130-2036-01	 	LICE DISS (6070a - Discrete
Send Report To		Blit Io Company	Colder Associates	0	THE PERSON ADVISOR VED. VS. U. P. SE (ATV), F-AP
		Invoice Attn	Accounts Paysolo	<u>0</u> 	
Address	A DIVE SUR	Address	13815 Barrett Parkway Drive,	+!	HS20081252
City/State/Zip	Ballvin, MO 63021		······ ·······························	٤	Golder Associates
Phone	(314) 984-8300		Bellicin Nio 63021	IJ	Exide North CAMU Groundwater Quarterly
Fax			(314) 984-8303	Ħ	
e-Mail Address	Emily White Sciences	Fax		— 	
No.	Sample Descrimtion	il Address	USAccountsPayabieInvoices@golder.cbJ	galder.cbJ	
1 . AMA-45		Tim.	e Matrix Pres. #	# Bottles A	((
0 00/001 10E	- 0	8-26-20 1045	Groundwei 2,8	<u> </u>	 ; ; ; ; ; ;
				· - <u> </u> - ·	
	Ó	8-16-20 120	_i_	×	
4 1. MM-17			C [Groundy/a] 2.8	X	
5 LAW-5	<u>- 0</u>		Grout vdv.re 2,8	2 X	
6 LN1M-21			Groundwe 2.8	×	
7 P.//W-20R			Groundwe 2,8	2 X	
8 iv]://-41		8-76-20 1432	Groundwe 2.3	X	
6 /////12	B	-26-20 1508	8 Groundwa 2,8 2	- ×	
0 LNTM-9R		5	Groundwe 2.8	×	
ampler(s) Please Print & Sign		1626	Groun	×	
LOHN DRAC	yrow Sturk	FEDEX	Required Turnaround Time: (Check Box)	Time: (Check	Box) Critica Results Due Date.
Slinquisheddy:	$\bigcup_{\text{Date:}} D_{\text{Date:}} \frac{D_{\text{Date:}}}{37-2\delta} \frac{T_{\text{Ime:}}}{T_{\text{Ime:}}}$	ved b	1 STD 16 W4 Days	X 6 VVX Days Notes:	21 ref Drys [] 21 -10ur
gged by teboratory):	Date:	قا بر ۹	× 123 23 2020 (0. 2	2 C	Cooler ID Cooler Temp. OC Package: (Check One Box Below)
eservative Key: 1-	1-HCI 2-HNO ₃ 3-H ₂ SO ₄ 4-NaOH	5-Na ₂ S ₂ O ₃ 6-NaHSO ₄	SO4 7-Other 8-4°C 9-5	9-5035	200 L 200 L 100 H RH COC Read II BER OFFER DATA
Nimi	Unless otherwise agreed in a formal contract, services provided by ALS Environmental to the forme and a light document. C (f-2,	Form have been submit d by ALS Environments	tted to ALS Environmental. It are expressly limited to the terms		
		st be completed accurat	lely, the second s		is stated on the reverse.

Page 36 of 38

		Cincinnati, OH +1 513 733 5336	Fort Collins, CO +1 970 490 1511	Chain of Custody Form	Form	Houston, 7X +1 281 530 5656	Spring City, PA +1 610 948 4903	South Charleston, WV +1 304 356 3168
		Everett, WA +1 425 355 2600	Holland, MI +1 616 399 6070	Page 2 of 2		Middletown, PA +1 717 944 554t	Salt Lake City, UT +} 801 266 7700	York, PA +1 717 SOS S2RD
3	ALS)		ſ	coc ID: 224855	55			
				ALS Project Manager:	er:	ALS Wo	ALS Work Order #:	
	Customer Information			Project Information		Parameter/Method Request for Analysis	d Request for An	alysis
Purchase Order	130-2086-01		Project Name	Exide North CAMU GW Quarterly	AICPT	ICP_TVV (6020A - Total As, C	- Total As, Cd, Pb, Se (QTY))	
Work Order			Project Number	130-2086-01	B ICP D	ICP_DISS (3020A - Dissolved As. Cd. Pb. Se (QTY))-FidFl	f As. Cd. Pb. Se (C	TY))-FidFi
Company Name	Golder Associates		Bill To Company	Golder Associates	c MS/MSD	Q		······································
Send Report To	Emily White		Invoice Attn	Accounts Payable	Q			
Address	13515 Barrett Parkway Drive, Suit	zy Drive, Suit	Address	13615 Barrett Parkwcy Drive, Suit	ш	Golder A	HS20081252 Golder Associates	
City/State/Zip	Bellwin, MD 63021		City/State/Zip	Ballwin MO 63021	5			
Phone	(314) 984-8800		Phone	(314) 984-3800	.			
Fax			Fax	· · · · · · · · · · · · · · · · · · ·				
e-Mail Address	Ernily_White@golder.com	.com	e-Mail Address	USAccountsPayableInvoices@golder.cot	er.col			
No.	Sample Description		Date Tir	Time Matrix Pres. # Bottles	es A B	L C C	H D	J Hold
1 LMW-22		00	8-27-20 08	0834 Groundwa 2,8 2	××			
2 DUP-01			0	ZIL Groundwa 2,8 2	×			
ø			<u>]</u>			•		
4						, , ,		
5					 			
ß								
7					· ·	 		
8						· · · ·	· ·	
6								·
10		V						· · ·
Sampler(s) Please Print & Sign	Print & Sign	2	len l	Required Turnaround Ti	e: (Check Box)	0ther	Results Due Date:	Date:
LUHN US	TOX Nather		160	STD TO WILD DAYS	- ¹	🗍 2 WA DINS 🗍 2	24 Hour	
一 た え	S S	8-27-20			Notes:			
Relinquished by				2 8 28 22 20 200 101 300	Coaler ID	Cooler Temp. OC Pack	OC Package: (Check One Box Below)	
Logged by (Lationatory):		Date: Time:		Checked by (Laboratory):			Leval II Sta QC Leval II Sta O <i>CEan</i> Data	TRRP Chacklis:
Preservative Key:	1-HCI 2-HNO3	3-H ₂ SO ₄ 4-NaOH	5-Na ₂ S ₂ O ₃	6-NaHSO4 7-Other 8-4°C 9-5035	2		Level IV SY/0-16/CLP Diter	
Note: 1. Any chang 2. Unless offic 3. The Chain	es must be made in writing erwise agreed in a formal co of Custody is a legal docum	once samples and CC ontract, services prov nent. All information)C Form have been su ided by ALS Environm must be completed act	 Any changes must be made in writing once samples and COC Form have been submitted to ALS Environmental. Unless otherwise agreed in a formal contract, services provided by ALS Environmental are expressly limited to the terms and conditions stated on the reverse. The Chain of Custody is a legal document. All information must be completed accurately. 	d conditions stat	ed on the reverse.	Copyright 2011 E	Copyright 2011 by ALS Environmental.

Page 37 of 38

 -	sear Drokan Bys				
CUSTODY SEAL		Dale: 6-2.4-60/ Time: 1/ 68	Name:	Compa ^W (Dib L'D EX	
ALS	10450 Stancliff Ped., Suito 210	Houston, Texas 77099	Tei. +1 281 530 5656	Fax. +1 281 530 5887	
				(ALS)	,

FRI – 28 AUG 10:30A Priority overnight	77099 1x-us 1AH	
FedEx [TR# 1891 8879 5876	AB SGRA	

61630-9

10450 Stancliff Rd. Suite 210 Houston, TX 77099 T: +1 281 530 5656 F: +1 281 530 5887

December 19, 2020

Emily Forthaus Golder Associates 13515 Barrett Parkway Drive, Suite 260 Ballwin, MO 63021

Work Order: **HS20120485**

Laboratory Results for: Exide North CAMU GW Quarterly

Dear Emily Forthaus,

ALS Environmental received 12 sample(s) on Dec 09, 2020 for the analysis presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental and for only the analyses requested. Results are expressed as "as received" unless otherwise noted.

QC sample results for this data met EPA or laboratory specifications except as noted in the Case Narrative or as noted with qualifiers in the QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained by ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

If you have any questions regarding this report, please feel free to call me.

Sincerely,

Generated By: JUMOKE.LAWAL Dane J. Wacasey

ALS Houston, US

Client:Golder AssociatesTRRP Laboratory DataProject:Exide North CAMU GW QuarterlyPackage Cover PageWorkOrder:HS20120485Package Cover Page

This data package consists of all or some of the following as applicable:

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC Chapter 5,
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
 - a) Calculated recovery (%R), andb) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,b) Calculated %R for each analyte, andc)The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits.
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) the amount of analyte measured in the duplicate,
 - b) the calculated RPD, and
 - c) the laboratory's QC limits for analytical duplicates.

R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix.

R10 Other problems or anomalies.

The Exception Report for each "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

ALS Houston, US

Client:	Golder Associates					
Project:	Exide North CAMU GW Quarterly	TRRP Laboratory Data Package Cover Page				
WorkOrder:	HS20120485	rackaye cover raye				
Delever Office and Lever second site of the second se						

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory have been identified by the laboratory in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Check, if applicable: [NA] This laboratory meets an exception under 30 TAC §25.6 and was last inspected by [] TCEQ or [] ______ on (enter date of last inspection). Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Dane J. Wacasey

Page 3 of 36

T _1		Laboratory Review Checklist: Repo						
		J 1	ate:12/19/20					
			ory Job Nur					
			r	1	1,160725			
#1	A^2	Description		Yes	No	NA ³	NR ⁴	ER# ⁵
R1	OI	Chain-of-custody (C-O-C) Did samples meet the laboratory's standard conditions of sample according to the sample according to	antohility.					
		upon receipt?	eptability	Х				
		Were all departures from standard conditions described in an exception	on report?	X			-	-
R2	OI	Sample and quality control (QC) identification						
		Are all field sample ID numbers cross-referenced to the laboratory ID) numbers?	Х				
		Are all laboratory ID numbers cross-referenced to the corresponding		Х				
R3	OI	Test reports						
		Were all samples prepared and analyzed within holding times?		Х				
		Other than those results < MQL, were all other raw values bracketed	by					
		calibration standards?		Х			_	
		Were calculations checked by a peer or supervisor?		Х			_	
		Were all analyte identifications checked by a peer or supervisor?		Х			_	
		Were sample detection limits reported for all analytes not detected?	1.1.1.2	Х			_	
		Were all results for soil and sediment samples reported on a dry weig				X	_	
		Were % moisture (or solids) reported for all soil and sediment sample				X		
		Were bulk soils/solids samples for volatile analysis extracted with me SW-846 Method 5035?	einanol per			v		
		SW-846 Method 5035? If required for the project, TICs reported?			X			
R4	0	Surrogate recovery data				Λ		
114		Were surrogates added prior to extraction?				X		
		Were surrogate percent recoveries in all samples within the laboratory	V OC			Λ	-	-
		limits?	, 20			Х		
R5	OI	Test reports/summary forms for blank samples						
		Were appropriate type(s) of blanks analyzed?		Х				
		Were blanks analyzed at the appropriate frequency?		Х				
		Were method blanks taken through the entire analytical process, inclu	ıding					
		preparation and, if applicable, cleanup procedures?	_	Х				
		Were blank concentrations < MQL?		Х				
R6	OI	Laboratory control samples (LCS):						
		Were all COCs included in the LCS?		Х			_	
		Was each LCS taken through the entire analytical procedure, includir	ng prep and	v				
		cleanup steps?		X				_
		Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory QC	limita?	X X				
		Does the detectability data document the laboratory's capability to de		Λ				
		COCs at the MDL used to calculate the SDLs?	leet the	Х				
		Was the LCSD RPD within QC limits?		X				
R 7	OI	Matrix spike (MS) and matrix spike duplicate (MSD) data						
	-	Were the project/method specified analytes included in the MS and N	ASD?	Х				
		Were MS/MSD analyzed at the appropriate frequency?		X	1		1	1
		Were MS (and MSD, if applicable) %Rs within the laboratory QC lin	nits?	Х				
		Were MS/MSD RPDs within laboratory QC limits?		Х				
R8	OI	Analytical duplicate data						
		Were appropriate analytical duplicates analyzed for each matrix?				Х		
		Were analytical duplicates analyzed at the appropriate frequency?				X X		
		Were RPDs or relative standard deviations within the laboratory QC	limits?			X		
R9	OI	Method quantitation limits (MQLs):						
		Are the MQLs for each method analyte included in the laboratory dat		Х	<u> </u>	_		_
		Do the MQLs correspond to the concentration of the lowest non-zero	calibration	v				
		standard?		X X				-
D10	OT	Are unadjusted MQLs and DCSs included in the laboratory data pack	age:	Λ				
R10	OI	Other problems/anomalies Are all known problems/anomalies/special conditions noted in this Li	RC and					
		ER?	ice allu	Х				
		Were all necessary corrective actions performed for the reported data	?	X	+			-
		Was applicable and available technology used to lower the SDL and		Λ		-	-	
	1	the matrix interference affects on the sample results?		Х				
					1		+	+
			gram for					
		Is the laboratory NELAC-accredited under the Texas Laboratory Pro- the analytes, matrices and methods associated with this laboratory da		х				

Labor	atory	Laboratory Review Chee Name: ALS Laboratory Group	LRC Date:12/19/2020					
		e: Exide North CAMU GW Quarterly	Laboratory Job Numb		5201204	185		
		ame: Dane Wacasey	Prep Batch Number: 160					
# ¹	A ²	Description	Yes	No	NA ³	NR ⁴	ER#	
<u>S1</u>	OI	Initial calibration (ICAL)		105	110	1111	111	
		Were response factors and/or relative response factors for	each analyte within QC					
		limits?	•	Х				
		Were percent RSDs or correlation coefficient criteria met	?	Х				
		Was the number of standards recommended in the method		Х				
		Were all points generated between the lowest and highest	standard used to					
		calculate the curve?		Х		_		
		Are ICAL data available for all instruments used?		Х		_		
		Has the initial calibration curve been verified using an app standard?	propriate second source	Х				
		Initial and continuing calibration verification (ICCV a	nd CCV) and	Λ				
S2	OI	continuing calibration blank (CCB)	nd CCV) and					
52	01	Was the CCV analyzed at the method-required frequency?)	Х				
		Were percent differences for each analyte within the meth	od-required OC limits?	X	<u> </u>			+
		Was the ICAL curve verified for each analyte?	ou required QC mints.	X	1			-
		Was the absolute value of the analyte concentration in the	inorganic CCB < MDL?	X				1
S 3	0	Mass spectral tuning:						
		Was the appropriate compound for the method used for tu	ning?	Х				
		Were ion abundance data within the method-required QC		Х				
S4	0	Internal standards (IS):						
		Were IS area counts and retention times within the method	d-required QC limits?	Х				
		Raw data (NELAC section 1 appendix A glossary, and se	ection 5.12 or ISO/IEC					
S5	OI	17025 section						
		Were the raw data (for example, chromatograms, spectral	data) reviewed by an					
		analyst?		Х				_
	-	Were data associated with manual integrations flagged on	the raw data?	Х		_		_
S6	0	Dual column confirmation	1000			X		
07		Did dual column confirmation results meet the method-red	quired QC?			X		_
S 7	0	Tentatively identified compounds (TICs):	4					
		If TICs were requested, were the mass spectra and TIC da checks?	la subject lo appropriate			Х		
S8	Ι	Interference Check Sample (ICS) results:				1		
50	-	Were percent recoveries within method QC limits?		Х				
S9	Ι	Serial dilutions, post digestion spikes, and method of st	tandard additions					
		Were percent differences, recoveries, and the linearity with						
		specified in the method?	`	Х				
S10	OI	Method detection limit (MDL) studies						
		Was a MDL study performed for each reported analyte?		Х				
		Is the MDL either adjusted or supported by the analysis of	f DCSs?	Х				
S11	OI	Proficiency test reports:						
		Was the laboratory's performance acceptable on the applic	cable proficiency tests or					
~1.		evaluation studies?		Х				
S12	OI	Standards documentation	1					
		Are all standards used in the analyses NIST-traceable or o	btained from other	Х				
S13	OI	appropriate sources? Compound/analyte identification procedures		Λ				-
515	01	Are the procedures for compound/analyte identification do	ocumented?	Х				-
S14	OI	Demonstration of analyst competency (DOC)	Journemed?	Λ				
914		Was DOC conducted consistent with NELAC Chapter 5C	or ISO/IEC 4?	Х				
		Is documentation of the analyst's competency up-to-date a		X	<u> </u>		+	+
		Verification/validation documentation for methods (NI						
S15	OI	ISO/IEC 17025 Section 5)	r					
	1	Are all the methods used to generate the data documented.	, verified, and validated.					
		where applicable?	Х					
S16	OI	Laboratory standard operating procedures (SOPs):						
		Are laboratory SOPs current and on file for each method p		Х				
		by the letter "R" must be included in the laboratory data package subm			a sea a station of the	fied by the l	ottor "C" ob	auld ha

NR = Not Applicable, NR = Not Reviewed; R# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Review Checklist: Exception Reports							
Laboratory Name: ALS Laboratory Group LRC Date:12/19/2020							
Projec	t Name: Exide North CAMU GW Quarterly	Laboratory Job Number: HS20120485					
Reviewer Name: Dane Wacasey		Prep Batch Number: 160624,160724,160725					
ER# ⁵	ER# ⁵ Description						
	No Exceptions						
Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period. O = Organic Analyses; I = Inorganic Analyses (and general chemistry, when applicable); NA = Not Applicable; NR = Not Reviewed;							
R# = Ex	ception Report identification number (an Exception Report should be	completed for an item if "NR" or "No" is checked).					

Client:Golder AssociatesProject:Exide North CAMU GW QuarterlyWork Order:HS20120485

SAMPLE SUMMARY

Lab Samp ID	Client Sample ID	Matrix	TagNo	Collection Date	Date Received	Hold
HS20120485-01	MW-45	Groundwater		07-Dec-2020 11:15	09-Dec-2020 10:50	
HS20120485-02	PMW-19R	Groundwater		07-Dec-2020 11:50	09-Dec-2020 10:50	
HS20120485-03	LMW-8	Groundwater		07-Dec-2020 12:10	09-Dec-2020 10:50	
HS20120485-04	LMW-17	Groundwater		07-Dec-2020 12:55	09-Dec-2020 10:50	
HS20120485-05	LMW-5	Groundwater		07-Dec-2020 13:30	09-Dec-2020 10:50	
HS20120485-06	LMW-21	Groundwater		07-Dec-2020 14:03	09-Dec-2020 10:50	
HS20120485-07	PMW-20R	Groundwater		07-Dec-2020 14:40	09-Dec-2020 10:50	
HS20120485-08	MW-41	Groundwater		07-Dec-2020 15:14	09-Dec-2020 10:50	
HS20120485-09	MW-47	Groundwater		07-Dec-2020 15:55	09-Dec-2020 10:50	
HS20120485-10	LMW-9R	Groundwater		07-Dec-2020 16:40	09-Dec-2020 10:50	
HS20120485-11	LMW-22	Groundwater		08-Dec-2020 09:16	09-Dec-2020 10:50	
HS20120485-12	DUP-01	Groundwater		07-Dec-2020 13:30	09-Dec-2020 10:50	

Client:	Golder Associates	ANALYTICAL REPORT
Project:	Exide North CAMU GW Quarterly	WorkOrder:HS20120485
Sample ID:	MW-45	Lab ID:HS20120485-01
Collection Date:	07-Dec-2020 11:15	Matrix:Groundwater

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method	I:SW6020		Prep:SW3010A	/ 15-Dec-2020	Analyst: JHD
Arsenic	0.000907	J	0.000400	0.00200	mg/L	1	17-Dec-2020 17:53
Cadmium	U		0.000200	0.00200	mg/L	1	17-Dec-2020 17:53
Lead	U		0.000600	0.00200	mg/L	1	17-Dec-2020 17:53
Selenium	0.00188	J	0.00110	0.00200	mg/L	1	17-Dec-2020 17:53
DISSOLVED METALS BY SW6020A	Meth	nod:SW6	020 (dissolved)		Prep:SW3010A	/ 11-Dec-2020	Analyst: JHD
Arsenic	0.000574	J	0.000400	0.00200	mg/L	1	16-Dec-2020 21:26
Cadmium	U		0.000200	0.00200	mg/L	1	16-Dec-2020 21:26
Lead	U		0.000600	0.00200	mg/L	1	16-Dec-2020 21:26
Selenium	U		0.00110	0.00200	mg/L	1	16-Dec-2020 21:26

Client:	Golder Associates	ANALYTICAL REPORT
Project:	Exide North CAMU GW Quarterly	WorkOrder:HS20120485
Sample ID:	PMW-19R	Lab ID:HS20120485-02
Collection Date:	07-Dec-2020 11:50	Matrix:Groundwater

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method	I:SW6020		Prep:SW3010A	/ 15-Dec-2020	Analyst: ALR
Arsenic	0.00163	J	0.000400	0.00200	mg/L	1	16-Dec-2020 20:27
Cadmium	U		0.000200	0.00200	mg/L	1	16-Dec-2020 20:27
Lead	0.000659	J	0.000600	0.00200	mg/L	1	16-Dec-2020 20:27
Selenium	U		0.00110	0.00200	mg/L	1	16-Dec-2020 20:27
DISSOLVED METALS BY SW6020A	Meth	nod:SW6	020 (dissolved)		Prep:SW3010A	/ 11-Dec-2020	Analyst: JHD
Arsenic	0.000974	J	0.000400	0.00200	mg/L	1	16-Dec-2020 21:51
Cadmium	U		0.000200	0.00200	mg/L	1	16-Dec-2020 21:51
Lead	U		0.000600	0.00200	mg/L	1	16-Dec-2020 21:51
Selenium	U		0.00110	0.00200	mg/L	1	16-Dec-2020 21:51

Client:	Golder Associates	ANALYTICAL REPORT
Project:	Exide North CAMU GW Quarterly	WorkOrder:HS20120485
Sample ID:	LMW-8	Lab ID:HS20120485-03
Collection Date:	07-Dec-2020 12:10	Matrix:Groundwater

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method	I:SW6020		Prep:SW3010A	/ 15-Dec-2020	Analyst: ALR
Arsenic	0.00142	J	0.000400	0.00200	mg/L	1	16-Dec-2020 20:29
Cadmium	U		0.000200	0.00200	mg/L	1	16-Dec-2020 20:29
Lead	0.000670	J	0.000600	0.00200	mg/L	1	16-Dec-2020 20:29
Selenium	0.00695		0.00110	0.00200	mg/L	1	16-Dec-2020 20:29
DISSOLVED METALS BY SW6020A	Meth	nod:SW6	020 (dissolved)		Prep:SW3010A	/ 11-Dec-2020	Analyst: JHD
Arsenic	0.000894	J	0.000400	0.00200	mg/L	1	16-Dec-2020 21:53
Cadmium	U		0.000200	0.00200	mg/L	1	16-Dec-2020 21:53
Lead	U		0.000600	0.00200	mg/L	1	16-Dec-2020 21:53
Selenium	0.00748		0.00110	0.00200	mg/L	1	16-Dec-2020 21:53

Client:	Golder Associates	ANALYTICAL REPORT
Project:	Exide North CAMU GW Quarterly	WorkOrder:HS20120485
Sample ID:	LMW-17	Lab ID:HS20120485-04
Collection Date:	07-Dec-2020 12:55	Matrix:Groundwater

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method	I:SW6020		Prep:SW3010A	/ 15-Dec-2020	Analyst: ALR
Arsenic	0.000663	J	0.000400	0.00200	mg/L	1	16-Dec-2020 20:31
Cadmium	U		0.000200	0.00200	mg/L	1	16-Dec-2020 20:31
Lead	U		0.000600	0.00200	mg/L	1	16-Dec-2020 20:31
Selenium	U		0.00110	0.00200	mg/L	1	16-Dec-2020 20:31
DISSOLVED METALS BY SW6020A	Meth	nod:SW6	020 (dissolved)		Prep:SW3010A	/ 11-Dec-2020	Analyst: JHD
Arsenic	0.000675	J	0.000400	0.00200	mg/L	1	16-Dec-2020 21:55
Cadmium	U		0.000200	0.00200	mg/L	1	16-Dec-2020 21:55
Lead	U		0.000600	0.00200	mg/L	1	16-Dec-2020 21:55
Selenium	U		0.00110	0.00200	mg/L	1	16-Dec-2020 21:55

Client:	Golder Associates	ANALYTICAL REPORT
Project:	Exide North CAMU GW Quarterly	WorkOrder:HS20120485
Sample ID:	LMW-5	Lab ID:HS20120485-05
Collection Date:	07-Dec-2020 13:30	Matrix:Groundwater

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method	I:SW6020		Prep:SW3010A	/ 15-Dec-2020	Analyst: JHD
Arsenic	0.00106	J	0.000400	0.00200	mg/L	1	17-Dec-2020 18:03
Cadmium	U		0.000200	0.00200	mg/L	1	17-Dec-2020 18:03
Lead	0.000725	J	0.000600	0.00200	mg/L	1	17-Dec-2020 18:03
Selenium	0.00164	J	0.00110	0.00200	mg/L	1	17-Dec-2020 18:03
DISSOLVED METALS BY SW6020A	Meth	nod:SW6	020 (dissolved)		Prep:SW3010A	/ 11-Dec-2020	Analyst: JHD
Arsenic	0.000626	J	0.000400	0.00200	mg/L	1	16-Dec-2020 21:57
Cadmium	U		0.000200	0.00200	mg/L	1	16-Dec-2020 21:57
Lead	U		0.000600	0.00200	mg/L	1	16-Dec-2020 21:57
Selenium	U		0.00110	0.00200	mg/L	1	16-Dec-2020 21:57

Client:	Golder Associates	ANALYTICAL REPORT
Project:	Exide North CAMU GW Quarterly	WorkOrder:HS20120485
Sample ID:	LMW-21	Lab ID:HS20120485-06
Collection Date:	07-Dec-2020 14:03	Matrix:Groundwater

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method	I:SW6020		Prep:SW3010A	A / 15-Dec-2020	Analyst: JHD
Arsenic	0.00125	J	0.000400	0.00200	mg/L	1	17-Dec-2020 18:11
Cadmium	U		0.000200	0.00200	mg/L	1	17-Dec-2020 18:11
Lead	0.00635		0.000600	0.00200	mg/L	1	17-Dec-2020 18:11
Selenium	0.00411		0.00110	0.00200	mg/L	1	17-Dec-2020 18:11
DISSOLVED METALS BY SW6020A	Meth	nod:SW6	020 (dissolved)		Prep:SW3010A	/ 11-Dec-2020	Analyst: JHD
Arsenic	0.000814	J	0.000400	0.00200	mg/L	1	16-Dec-2020 22:03
Cadmium	U		0.000200	0.00200	mg/L	1	16-Dec-2020 22:03
Lead	0.000740	J	0.000600	0.00200	mg/L	1	16-Dec-2020 22:03
Selenium	0.00285		0.00110	0.00200	mg/L	1	16-Dec-2020 22:03

Client:	Golder Associates	ANALYTICAL REPORT
Project:	Exide North CAMU GW Quarterly	WorkOrder:HS20120485
Sample ID:	PMW-20R	Lab ID:HS20120485-07
Collection Date:	07-Dec-2020 14:40	Matrix:Groundwater

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method	I:SW6020		Prep:SW3010A	/ 15-Dec-2020	Analyst: JHD
Arsenic	0.000681	J	0.000400	0.00200	mg/L	1	17-Dec-2020 18:13
Cadmium	U		0.000200	0.00200	mg/L	1	17-Dec-2020 18:13
Lead	0.00107	J	0.000600	0.00200	mg/L	1	17-Dec-2020 18:13
Selenium	U		0.00110	0.00200	mg/L	1	17-Dec-2020 18:13
DISSOLVED METALS BY SW6020A	Meth	nod:SW6	020 (dissolved)		Prep:SW3010A	/ 11-Dec-2020	Analyst: JHD
Arsenic	0.000414	J	0.000400	0.00200	mg/L	1	16-Dec-2020 22:05
Cadmium	U		0.000200	0.00200	mg/L	1	16-Dec-2020 22:05
Lead	U		0.000600	0.00200	mg/L	1	16-Dec-2020 22:05
Selenium	U		0.00110	0.00200	mg/L	1	16-Dec-2020 22:05

Client:	Golder Associates	ANALYTICAL REPORT
Project:	Exide North CAMU GW Quarterly	WorkOrder:HS20120485
Sample ID:	MW-41	Lab ID:HS20120485-08
Collection Date:	07-Dec-2020 15:14	Matrix:Groundwater

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method	I:SW6020		Prep:SW3010A	/ 15-Dec-2020	Analyst: JHD
Arsenic	0.00403		0.000400	0.00200	mg/L	1	17-Dec-2020 18:15
Cadmium	U		0.000200	0.00200	mg/L	1	17-Dec-2020 18:15
Lead	0.000835	J	0.000600	0.00200	mg/L	1	17-Dec-2020 18:15
Selenium	U		0.00110	0.00200	mg/L	1	17-Dec-2020 18:15
DISSOLVED METALS BY SW6020A	Meth	nod:SW6	020 (dissolved)		Prep:SW3010A	/ 11-Dec-2020	Analyst: JHD
Arsenic	0.000960	J	0.000400	0.00200	mg/L	1	16-Dec-2020 22:07
Cadmium	U		0.000200	0.00200	mg/L	1	16-Dec-2020 22:07
Lead	U		0.000600	0.00200	mg/L	1	16-Dec-2020 22:07
Selenium	U		0.00110	0.00200	mg/L	1	16-Dec-2020 22:07

Client:	Golder Associates	ANALYTICAL REPORT
Project:	Exide North CAMU GW Quarterly	WorkOrder:HS20120485
Sample ID:	MW-47	Lab ID:HS20120485-09
Collection Date:	07-Dec-2020 15:55	Matrix:Groundwater

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method	I:SW6020		Prep:SW3010A	/ 15-Dec-2020	Analyst: JHD
Arsenic	0.000676	J	0.000400	0.00200	mg/L	1	17-Dec-2020 18:17
Cadmium	U		0.000200	0.00200	mg/L	1	17-Dec-2020 18:17
Lead	U		0.000600	0.00200	mg/L	1	17-Dec-2020 18:17
Selenium	U		0.00110	0.00200	mg/L	1	17-Dec-2020 18:17
DISSOLVED METALS BY SW6020A	Meth	nod:SW6	020 (dissolved)		Prep:SW3010A / 11-Dec-2020 Analyst		
Arsenic	0.000588	J	0.000400	0.00200	mg/L	1	16-Dec-2020 22:09
Cadmium	U		0.000200	0.00200	mg/L	1	16-Dec-2020 22:09
Lead	U		0.000600	0.00200	mg/L	1	16-Dec-2020 22:09
Selenium	U		0.00110	0.00200	mg/L	1	16-Dec-2020 22:09

Client:	Golder Associates	ANALYTICAL REPORT
Project:	Exide North CAMU GW Quarterly	WorkOrder:HS20120485
Sample ID:	LMW-9R	Lab ID:HS20120485-10
Collection Date:	07-Dec-2020 16:40	Matrix:Groundwater

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method:SW6020			Prep:SW3010A	/ 15-Dec-2020	Analyst: JHD
Arsenic	0.00198	J	0.000400	0.00200	mg/L	1	17-Dec-2020 18:19
Cadmium	U		0.000200	0.00200	mg/L	1	17-Dec-2020 18:19
Lead	U		0.000600	0.00200	mg/L	1	17-Dec-2020 18:19
Selenium	0.00311		0.00110	0.00200	mg/L	1	17-Dec-2020 18:19
DISSOLVED METALS BY SW6020A	Meth	nod:SW6	020 (dissolved)		Prep:SW3010A / 11-Dec-2020		Analyst: JHD
Arsenic	0.00210		0.000400	0.00200	mg/L	1	16-Dec-2020 22:11
Cadmium	U		0.000200	0.00200	mg/L	1	16-Dec-2020 22:11
Lead	U		0.000600	0.00200	mg/L	1	16-Dec-2020 22:11
Selenium	0.00313		0.00110	0.00200	mg/L	1	16-Dec-2020 22:11

Client:	Golder Associates	ANALYTICAL REPORT
Project:	Exide North CAMU GW Quarterly	WorkOrder:HS20120485
Sample ID:	LMW-22	Lab ID:HS20120485-11
Collection Date:	08-Dec-2020 09:16	Matrix:Groundwater

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED
ICP-MS METALS BY SW6020A		Method:SW6020			Prep:SW3010A	/ 15-Dec-2020	Analyst: JHD
Arsenic	0.00855		0.000400	0.00200	mg/L	1	17-Dec-2020 18:21
Cadmium	U		0.000200	0.00200	mg/L	1	17-Dec-2020 18:21
Lead	U		0.000600	0.00200	mg/L	1	17-Dec-2020 18:21
Selenium	U		0.00110	0.00200	mg/L	1	17-Dec-2020 18:21
DISSOLVED METALS BY SW6020A	SSOLVED METALS BY SW6020A Method:SW6020 (dissolved)			Prep:SW3010A	/ 11-Dec-2020	Analyst: JHD	
Arsenic	0.00750		0.000400	0.00200	mg/L	1	16-Dec-2020 22:13
Cadmium	U		0.000200	0.00200	mg/L	1	16-Dec-2020 22:13
Lead	U		0.000600	0.00200	mg/L	1	16-Dec-2020 22:13
Selenium	U		0.00110	0.00200	mg/L	1	16-Dec-2020 22:13

Client:	Golder Associates	ANALYTICAL REPORT
Project:	Exide North CAMU GW Quarterly	WorkOrder:HS20120485
Sample ID:	DUP-01	Lab ID:HS20120485-12
Collection Date:	07-Dec-2020 13:30	Matrix:Groundwater

ANALYSES	RESULT	QUAL	SDL	MQL	UNITS	DILUTION FACTOR	DATE ANALYZED	
ICP-MS METALS BY SW6020A		Method	Method:SW6020		Prep:SW3010A	/ 15-Dec-2020	Analyst: JHD	
Arsenic	0.000655	J	0.000400	0.00200	mg/L	1	17-Dec-2020 18:23	
Cadmium	U		0.000200	0.00200	mg/L	1	17-Dec-2020 18:23	
Lead	U		0.000600	0.00200	mg/L	1	17-Dec-2020 18:23	
Selenium	U		0.00110	0.00200	mg/L	1	17-Dec-2020 18:23	
DISSOLVED METALS BY SW6020A	Meth	nod:SW6	020 (dissolved)		Prep:SW3010A / 11-Dec-2020 Analyst: JHD			
Arsenic	0.000650	J	0.000400	0.00200	mg/L	1	16-Dec-2020 22:15	
Cadmium	U		0.000200	0.00200	mg/L	1	16-Dec-2020 22:15	
Lead	0.00102	J	0.000600	0.00200	mg/L	1	16-Dec-2020 22:15	
Selenium	U		0.00110	0.00200	mg/L	1	16-Dec-2020 22:15	

Weight / Prep Log

Client:Golder AssociatesProject:Exide North CAMU GW Quarterly

WorkOrder: HS20120485

Batch ID: 160624		Start Date:	11 Dec 202	20 13:00	End Date: 11 Dec 2020 15:00
Method: DISS METALS PR	REP - WATER	- SW3010A			Prep Code: 3010A DISS
Sample ID	Container	Sample Wt/Vol	Final Volume	Prep Factor	
HS20120485-01		10 (mL)	10 (mL)	1	
HS20120485-02		10 (mL)	10 (mL)	1	
HS20120485-03		10 (mL)	10 (mL)	1	
HS20120485-04		10 (mL)	10 (mL)	1	
HS20120485-05		10 (mL)	10 (mL)	1	
HS20120485-06		10 (mL)	10 (mL)	1	
HS20120485-07		10 (mL)	10 (mL)	1	
HS20120485-08		10 (mL)	10 (mL)	1	
HS20120485-09		10 (mL)	10 (mL)	1	
HS20120485-10		10 (mL)	10 (mL)	1	
HS20120485-11		10 (mL)	10 (mL)	1	
HS20120485-12		10 (mL)	10 (mL)	1	
Batch ID: 160724		Start Date:	15 Dec 202	20 09:00	End Date: 15 Dec 2020 13:00
Method: WATER - SW301	0A				Prep Code: 3010A
Sample ID	Container	Sample Wt/Vol	Final Volume	Prep Factor	
HS20120485-02		10 (mL)	10 (mL)	1	
HS20120485-03		10 (mL)	10 (mL)	1	
HS20120485-04		10 (mL)	10 (mL)	1	
Batch ID: 160725		Start Date:	15 Dec 202	20 09:00	End Date: 15 Dec 2020 13:00
Method: WATER - SW301	0A				Prep Code: 3010A
Sample ID	Container	Sample Wt/Vol	Final Volume	Prep Factor	
HS20120485-01		10 (mL)	10 (mL)	1	
HS20120485-05		10 (mL)	10 (mL)	1	
HS20120485-06		10 (mL)	10 (mL)	1	
HS20120485-07		10 (mL)	10 (mL)	1	
HS20120485-08		10 (mL)	10 (mL)	1	
HS20120485-09		10 (mL)	10 (mL)	1	
HS20120485-10		10 (mL)	10 (mL)	1	
HS20120485-10 HS20120485-11			10 (mL) 10 (mL)	<u>1</u> 1	

=

-20

DATES REPORT

Client:	Golder Associates
Project:	Exide North CAMU GW Quarterly
WorkOrder:	HS20120485

Sample ID	Client Sam	p ID Collection Date	Leachate Date	Prep Date	Analysis Date	DF
Batch ID: 160624	(0)	Test Name : DISSOLVED METALS I	BY SW6020A		Matrix: Groundw	ater
HS20120485-01	MW-45	07 Dec 2020 11:15		11 Dec 2020 15:00	16 Dec 2020 21:26	1
HS20120485-02	PMW-19R	07 Dec 2020 11:50		11 Dec 2020 15:00	16 Dec 2020 21:51	1
HS20120485-03	LMW-8	07 Dec 2020 12:10		11 Dec 2020 15:00	16 Dec 2020 21:53	1
HS20120485-04	LMW-17	07 Dec 2020 12:55		11 Dec 2020 15:00	16 Dec 2020 21:55	1
HS20120485-05	LMW-5	07 Dec 2020 13:30		11 Dec 2020 15:00	16 Dec 2020 21:57	1
HS20120485-06	LMW-21	07 Dec 2020 14:03		11 Dec 2020 15:00	16 Dec 2020 22:03	1
HS20120485-07	PMW-20R	07 Dec 2020 14:40		11 Dec 2020 15:00	16 Dec 2020 22:05	1
HS20120485-08	MW-41	07 Dec 2020 15:14		11 Dec 2020 15:00	16 Dec 2020 22:07	1
HS20120485-09	MW-47	07 Dec 2020 15:55		11 Dec 2020 15:00	16 Dec 2020 22:09	1
HS20120485-10	LMW-9R	07 Dec 2020 16:40		11 Dec 2020 15:00	16 Dec 2020 22:11	1
HS20120485-11	LMW-22	08 Dec 2020 09:16		11 Dec 2020 15:00	16 Dec 2020 22:13	1
HS20120485-12	DUP-01	07 Dec 2020 13:30		11 Dec 2020 15:00	16 Dec 2020 22:15	1
Batch ID: 160724 (0)		Test Name : ICP-MS METALS BY S	W6020A		Matrix: Groundw	ater
HS20120485-02	PMW-19R	07 Dec 2020 11:50		15 Dec 2020 13:00	16 Dec 2020 20:27	1
HS20120485-03	LMW-8	07 Dec 2020 12:10		15 Dec 2020 13:00	16 Dec 2020 20:29	1
HS20120485-04	LMW-17	07 Dec 2020 12:55		15 Dec 2020 13:00	16 Dec 2020 20:31	1
Batch ID: 160725	(0)	Test Name : ICP-MS METALS BY S	W6020A		Matrix: Groundw	ater
HS20120485-01	MW-45	07 Dec 2020 11:15		15 Dec 2020 13:00	17 Dec 2020 17:53	1
HS20120485-05	LMW-5	07 Dec 2020 13:30		15 Dec 2020 13:00	17 Dec 2020 18:03	1
HS20120485-06	LMW-21	07 Dec 2020 14:03		15 Dec 2020 13:00	17 Dec 2020 18:11	1
HS20120485-07	PMW-20R	07 Dec 2020 14:40		15 Dec 2020 13:00	17 Dec 2020 18:13	1
HS20120485-08	MW-41	07 Dec 2020 15:14		15 Dec 2020 13:00	17 Dec 2020 18:15	1
HS20120485-09	MW-47	07 Dec 2020 15:55		15 Dec 2020 13:00	17 Dec 2020 18:17	1
HS20120485-10	LMW-9R	07 Dec 2020 16:40		15 Dec 2020 13:00	17 Dec 2020 18:19	1
HS20120485-11	LMW-22	08 Dec 2020 09:16		15 Dec 2020 13:00	17 Dec 2020 18:21	1
HS20120485-12	DUP-01	07 Dec 2020 13:30		15 Dec 2020 13:00	17 Dec 2020 18:23	1

WorkOrder: HS20120485			ME	METHOD DETECTION /					
InstrumentID: ICPMS06					R	REPORTING LIMITS			
Test	Code:	ICP_DISS							
Test Number: SW6020 (dissolved)			Matrix: Aqueous	۰. ۱۱۰۰ ۲	Units: mg/L				
Test	Name:	Dissolved Metals by SW	/6020A		us Units: mg/L				
Туре	Analyte		CAS	DCS Spike	DCS	MDL	PQL		
А	Arsenic		7440-38-2	0.00100	0.00102	0.000400	0.00200		
А	Cadmium		7440-43-9	0.000500	0.000436	0.000200	0.00200		
А	Lead		7439-92-1	0.00100	0.000935	0.000600	0.00200		

Selenium

А

0.00200

0.00110

0.00204

0.00250

Work	Order:	HS20120485			ME	THOD DETEC	TION /
Instru	umentID:	ICPMS05			RI	EPORTING LI	MITS
Test	Test Code: ICP_TW						
Test	Number:	SW6020		Matrix: Aqueous	Llm	its: mg/L	
Test	Name:	ICP-MS Metals by SW6020A		Mairix: Aqueous	s Units: mg/L		
Туре	Analyte		CAS	DCS Spike	DCS	MDL	PQL
А	Arsenic		7440-38-2	0.00100	0.000837	0.000400	0.00200
А	Cadmium		7440-43-9	0.000500	0.000431	0.000200	0.00200
А	Lead		7439-92-1	0.00100	0.00117	0.000600	0.00200

7782-49-2

Selenium

А

0.00200

0.00110

0.00224

0.00250

Work	(Order:	HS20120485	METHOD DETECTION /						
Instru	umentID:	ICPMS04			RE	REPORTING LIMITS			
Test	Code:	ICP_TW r: SW6020							
Test	Number:			Matrix: Aqueous	Units: mg/L				
Test	Name:	ICP-MS Metals by SW6020A		Mairix: Aqueous	Un				
Туре	Analyte		CAS	DCS Spike	DCS	MDL	PQL		
А	Arsenic		7440-38-2	0.00100	0.00119	0.000400	0.00200		
А	Cadmium		7440-43-9	0.000500	0.000487	0.000200	0.00200		
A	Lead		7439-92-1	0.00100	0.000968	0.000600	0.00200		

7782-49-2

QC BATCH REPORT

Batch ID:	160624(0)	Instr	rument:	ICPMS06	Me		DISSOLVED (DISSOLVED	METALS BY	SW6020A
MBLK	Sample ID:	MBLKF2-160624		Units:	mg/L	An	alysis Date:	16-Dec-2020	21:14
Client ID:		Ru	In ID: ICP	MS06_374788	SeqNo: 5	884814	PrepDate:	11-Dec-2020	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Arsenic		U	0.00200						
Cadmium		U	0.00200						
Lead		U	0.00200						
Selenium		U	0.00200						
MBLK	Sample ID:	MBLKF1-160624		Units:	mg/L	An	alysis Date:	16-Dec-2020	21:12
Client ID:		Ru	in ID: ICP	MS06_374788	SeqNo: 5	884813	PrepDate:	11-Dec-2020	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Arsenic		U	0.00200						
Cadmium		U	0.00200						
Lead		U	0.00200						
Selenium		U	0.00200						
MBLK	Sample ID:	MBLK-160624		Units:	mg/L	An	alysis Date:	16-Dec-2020	21:10
Client ID:		Ru	ın ID: ICP	MS06_374788	SeqNo: 5	884812	PrepDate:	11-Dec-2020	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Arsenic		U	0.00200						
Cadmium		U	0.00200						
Lead		U	0.00200						
Selenium		U	0.00200						
LCS	Sample ID:	LCS-160624		Units:	mg/L	An	alysis Date:	16-Dec-2020	21:16
Client ID:		Ru	in ID: ICP	MS06_374788	SeqNo: 5	884815	PrepDate:	11-Dec-2020	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Arsenic		0.05482	0.00200	0.05	0	110	80 - 120		
Cadmium		0.05467	0.00200	0.05	0	109	80 - 120		
Lead		0.05197	0.00200	0.05	0	104	80 - 120		
Selenium		0.05654	0.00200	0.05	0	113	80 - 120		

QC BATCH REPORT

Batch ID:	160624 (0)	Instru	ument:	ICPMS06	М		DISSOLVED DISSOLVED	METALS BY))	SW6020A
MS	Sample ID:	HS20120485-01MS		Units:	mg/L	Ana	alysis Date:	16-Dec-2020	21:30
Client ID:	MW-45	Ru	n ID: ICPN	IS06_374788	SeqNo:	5888683	PrepDate:	11-Dec-2020	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit		RPD %RPD Limit Qual
Arsenic		0.05389	0.00200	0.05	0.000574	107	75 - 125		
Cadmium		0.0521	0.00200	0.05	0.000009	104	75 - 125		
Lead		0.04962	0.00200	0.05	0.000013	99.2	75 - 125		
Selenium		0.05478	0.00200	0.05	0.000845	108	75 - 125		
MSD	Sample ID:	HS20120485-01MSI	D	Units:	mg/L	Ana	alysis Date:	16-Dec-2020	21:31
Client ID:	MW-45	Ru	n ID: ICPN	IS06_374788	SeqNo:	5888684	PrepDate:	11-Dec-2020	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit		RPD %RPD Limit Qual
Arsenic		0.05348	0.00200	0.05	0.000574	106	75 - 125	0.05389	0.766 20
Cadmium		0.05112	0.00200	0.05	0.000009	102	75 - 125	0.0521	1.89 20
Lead		0.0496	0.00200	0.05	0.000013	99.2	75 - 125	0.04962	0.0282 20
Selenium		0.05518	0.00200	0.05	0.000845	109	75 - 125	0.05478	0.711 20
PDS	Sample ID:	HS20120485-01PDS	6	Units:	mg/L	Ana	alysis Date:	16-Dec-2020	21:33
Client ID:	MW-45	Ru	n ID: ICPN	IS06_374788	SeqNo:	5888685	PrepDate:	11-Dec-2020	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit		RPD %RPD Limit Qual
Arsenic		0.122	0.00200	0.1	0.000574	121	75 - 125		
Cadmium		0.119	0.00200	0.1	0.000009	119	75 - 125		
Lead		0.1176	0.00200	0.1	0.000013	118	75 - 125		
Selenium		0.1246	0.00200	0.1	0.000845	124	75 - 125		
SD	Sample ID:	HS20120485-01SD		Units:	mg/L	Ana	alysis Date:	16-Dec-2020	21:28
Client ID:	MW-45	Ru	n ID: ICPN	IS06_374788	SeqNo:	5888682		11-Dec-2020	DF: 5
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%D %D Limit Qual
Arsenic		U	0.0100					0.000574	0 10
Cadmium		U	0.0100					0.000009	0 10
Lead		U	0.0100					0.000013	0 10
Selenium		U	0.0100					0.000845	0 10
The followin	g samples were analyze		20485-01 20485-05 20485-09	HS2012048 HS2012048 HS2012048	35-06	HS201204 HS201204 HS201204	85-07	HS20120485- HS20120485- HS20120485-	08

00	BATCH	REPORT
Q U	DAION	

Batch ID:	160724 (0)	Instr	ument:	ICPMS04	Me	ethod: I	CP-MS MET	ALS BY SW6	020A
MBLK	Sample ID:	MBLK-160724		Units:	mg/L	Ana	alysis Date:	16-Dec-2020	18:04
Client ID:		Ru	n ID: ICPM	IS04_374814	SeqNo: 5	884624	PrepDate:	15-Dec-2020	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Arsenic		U	0.00200						
Cadmium		U	0.00200						
Lead		U	0.00200						
Selenium		U	0.00200						
LCS	Sample ID:	LCS-160724		Units:	mg/L	Ana	alysis Date:	16-Dec-2020	18:06
Client ID:		Ru	n ID: ICPM	S04_374814	SeqNo: 5	884625	PrepDate:	15-Dec-2020	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Arsenic		0.04908	0.00200	0.05	0	98.2	80 - 120		
Cadmium		0.04972	0.00200	0.05	0	99.4	80 - 120		
Lead		0.04941	0.00200	0.05	0	98.8	80 - 120		
Selenium		0.04914	0.00200	0.05	0	98.3	80 - 120		
MS	Sample ID:	HS20120147-84MS		Units:	mg/L	Ana	alysis Date:	16-Dec-2020	18:26
Client ID:		Ru	n ID: ICPM	S04_374814	SeqNo: 5	884634	PrepDate:	15-Dec-2020	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Arsenic		0.05159	0.00200	0.05	0.000798	102	80 - 120		
Cadmium		0.0506	0.00200	0.05	0.000009	101	80 - 120		
Lead		0.04904	0.00200	0.05	0.000033	98.0	80 - 120		
Selenium		0.04918	0.00200	0.05	-0.00059	99.5	80 - 120		
MSD	Sample ID:	HS20120147-84MS	D	Units:	mg/L	Ana	alysis Date:	16-Dec-2020	18:28
Client ID:		Ru	n ID: ICPM	S04_374814	SeqNo: 5	884635	PrepDate:	15-Dec-2020	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref	RPD %RPD Limit Qual
Arsenic		0.05399	0.00200	0.05	0.000798	106	80 - 120	0.05159	4.54 20
Cadmium		0.0513	0.00200	0.05	0.000009	103	80 - 120	0.0506	1.37 20
Lead		0.05058	0.00200	0.05	0.000033	101	80 - 120	0.04904	3.11 20
Leau			0.00200	0.00	0.000000				•··· =•

QC BATCH REPORT

Batch ID:	160724(0)	Instru	ment:	ICPMS04	M	ethod: I	CP-MS MET	ALS BY SW6	020A	
PDS	Sample ID:	HS20120147-84PDS		Units:	mg/L	Ana	lysis Date:	16-Dec-2020	18:30	
Client ID:		Run	ID: ICPI	MS04_374814	SeqNo: 5	5884636	PrepDate:	15-Dec-2020	DF	- :1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit Qual
Arsenic		0.1224	0.00200	0.1	0.000798	122	75 - 125			
Cadmium		0.1202	0.00200	0.1	0.000009	120	75 - 125			
Lead		0.118	0.00200	0.1	0.000033	118	75 - 125			
Selenium		0.1195	0.00200	0.1	-0.00059	120	75 - 125			
SD	Sample ID:	HS20120147-84SD		Units:	mg/L	Ana	lysis Date:	16-Dec-2020	18:24	
Client ID:		Run	ID: ICPI	MS04_374814	SeqNo: 5	5884633	PrepDate:	15-Dec-2020	DF	: 5
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%D	%D Limit Qual
Arsenic		U	0.0100					0.000798		0 10
Cadmium		U	0.0100					0.000009		0 10
Lead		U	0.0100					0.000033		0 10
Selenium		U	0.0100					-0.00059		0 10
The following	g samples were analyze	ed in this batch: HS2012	20485-02	HS2012048	35-03	HS201204	85-04			

uarterly	QC BATCH REPORT

Batch ID:	160725(0)	Instr	ument:	ICPMS05	M	ethod: I	CP-MS MET	ALS BY SW6	020A
	Sample ID:	MBLK-160725			mg/L			17-Dec-2020	
Client ID: Analyte		Result	MQL	MS05_374858 SPK Val	SeqNo: 5 SPK Ref Value	%REC	Control Limit		DF: 1 RPD %RPD Limit Qual
Arsenic		U	0.00200						
Cadmium		U	0.00200						
Lead		U	0.00200						
Selenium		U	0.00200						
LCS	Sample ID:	LCS-160725		Units:	mg/L	Ana	alysis Date:	17-Dec-2020	22:18
Client ID:		Ru	n ID: ICPI	MS05_374858	SeqNo: 5	5886853	PrepDate:	15-Dec-2020	DF: 1
Analyte		Result	MQL	– SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref	RPD %RPD Limit Qual
Arsenic		0.05917	0.00200	0.05	0	118	80 - 120		
Cadmium		0.05409	0.00200	0.05	0	108	80 - 120		
Lead		0.04785	0.00200	0.05	0	95.7	80 - 120		
LCS	Sample ID:	LCS-160725		Units:	mg/L	Ana	alysis Date:	17-Dec-2020	17:42
Client ID:		Ru	n ID: ICPN	MS05_374858	SeqNo: 5	5886688	PrepDate:	15-Dec-2020	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit		RPD %RPD Limit Qual
Selenium		0.05226	0.00200	0.05	0	105	80 - 120		
мѕ	Sample ID:	HS20120485-01MS		Units:	ma/L	Ana	alvsis Date:	17-Dec-2020	17:57
Client ID:	MW-45			MS05_374858	SeqNo: 5			15-Dec-2020	
					SPK Ref		Control		RPD
Analyte		Result	MQL	SPK Val	Value	%REC	Limit		%RPD Limit Qual
Arsenic		0.05532	0.00200	0.05	0.000907	109	80 - 120		
Cadmium		0.04965	0.00200	0.05	0.000091	99.1	80 - 120		
Lead		0.04916	0.00200	0.05	0.000281	97.8	80 - 120		
Selenium		0.05984	0.00200	0.05	0.001883	116	80 - 120		

QC BATCH REPORT

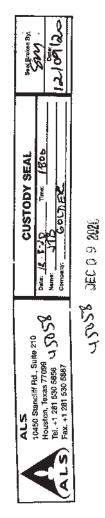
Batch ID:	160725(0)	Instru	ument:	ICPMS05	М	lethod: I	CP-MS MET	ALS BY SW6	020A
MSD	Sample ID:	HS20120485-01MSI	C	Units:	mg/L	Ana	alysis Date:	17-Dec-2020	17:59
Client ID:	MW-45	Ru	n ID: ICPM	IS05_374858	SeqNo:	5886696	PrepDate:	15-Dec-2020	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Arsenic		0.05786	0.00200	0.05	0.000907	114	80 - 120	0.05532	4.49 20
Cadmium		0.05301	0.00200	0.05	0.000091	106	80 - 120	0.04965	6.56 20
Lead		0.05379	0.00200	0.05	0.000281	107	80 - 120	0.04916	9 20
MSD	Sample ID:	HS20120485-01MSI	כ	Units:	mg/L	Ana	alysis Date:	17-Dec-2020	22:20
Client ID:	MW-45	Ru	n ID: ICPM	IS05_374858	SeqNo:	5886854	PrepDate:	15-Dec-2020	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Selenium		0.05994	0.00200	0.05	0.001883	116	80 - 120	0.05984	0.172 20
PDS	Sample ID:	HS20120485-01PDS	6	Units:	mg/L	Ana	alysis Date:	17-Dec-2020	18:01
Client ID:	MW-45	Ru	n ID: ICPM	IS05_374858	SeqNo:	5886697	PrepDate:	15-Dec-2020	DF: 1
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	RPD %RPD Limit Qual
Arsenic		0.1188	0.00200	0.1	0.000907	118	75 - 125		
Cadmium		0.1083	0.00200	0.1	0.000091	108	75 - 125		
Lead		0.1084	0.00200	0.1	0.000281	108	75 - 125		
SD	Sample ID:	HS20120485-01SD		Units:	mg/L	Ana	alysis Date:	17-Dec-2020	17:55
Client ID:	MW-45	Ru	n ID: ICPM	IS05_374858	SeqNo:	5886694	PrepDate:	15-Dec-2020	DF: 5
Analyte		Result	MQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%D %D Limit Qual
Arsenic		U	0.0100					0.000907	0 10
Cadmium		U	0.0100					0.000091	0 10
Lead		U	0.0100					0.000281	0 10
Selenium		U	0.0100					0.001883	0 10
The following	g samples were analyze		20485-01 20485-08 20485-12	HS2012048 HS2012048		HS201204 HS201204		HS20120485- HS20120485-	

ALS Houston, US

QualifierDescription*Value exceeds Regulatory LimitaNot accreditedBAnalyte detected in the associated Method Blank above the Reporting LimitEValue above quantitation rangeHAnalyzed outside of Holding TimeJAnalyte detected below quantitation limitMManually integrated, see raw data for justificationnNot offered for accreditation	
aNot accreditedBAnalyte detected in the associated Method Blank above the Reporting LimitEValue above quantitation rangeHAnalyzed outside of Holding TimeJAnalyte detected below quantitation limitMManually integrated, see raw data for justification	
BAnalyte detected in the associated Method Blank above the Reporting LimitEValue above quantitation rangeHAnalyzed outside of Holding TimeJAnalyte detected below quantitation limitMManually integrated, see raw data for justification	
EValue above quantitation rangeHAnalyzed outside of Holding TimeJAnalyte detected below quantitation limitMManually integrated, see raw data for justification	
H Analyzed outside of Holding Time J Analyte detected below quantitation limit M Manually integrated, see raw data for justification	
J Analyte detected below quantitation limit M Manually integrated, see raw data for justification	
M Manually integrated, see raw data for justification	
Not offered for accreditation	
ND Not Detected at the Reporting Limit	
C Sample amount is > 4 times amount spiked	
Dual Column results percent difference > 40%	
R RPD above laboratory control limit	
S Spike Recovery outside laboratory control limits	
J Analyzed but not detected above the MDL/SDL	
Acronym Description	
DCS Detectability Check Study	
DUP Method Duplicate	
.CS Laboratory Control Sample	
CSD Laboratory Control Sample Duplicate	
MBLK Method Blank	
MDL Method Detection Limit	
MQL Method Quantitation Limit	
MS Matrix Spike	
MSD Matrix Spike Duplicate	
PDS Post Digestion Spike	
PQL Practical Quantitaion Limit	
SD Serial Dilution	
SDL Sample Detection Limit	
TRRP Texas Risk Reduction Program	

CERTIFICATIONS, ACCREDITATIONS & LICENSES

Agency	Number	Expire Date
Arkansas	20-030-0	26-Mar-2021
California	2919, 2020-2021	30-Apr-2021
Dept of Defense	PJLA L20-507	22-Dec-2021
Florida	E87611-30-07/01/2020	30-Jun-2021
Illinois	2000322020-4	09-May-2021
Kansas	E-10352 2020-2021	31-Jul-2021
Kentucky	123043, 2020-2021	30-Apr-2021
Louisiana	03087, 2020-2021	30-Jun-2021
North Carolina	624-2020	31-Dec-2020
North Dakota	R-193 2020-2021	30-Apr-2021
Oklahoma	2020-165	31-Aug-2021
Texas	T104704231-20-26	30-Apr-2021


					Sample Receipt Checklist
Work Order ID: Client Name:	HS20120485 Golder St Louis			Time Received: ived by:	<u>09-Dec-2020 10:50</u> Jared R. Makan
Completed By	: /S/ Pablo Marinez	10-Dec-2020 09:42	Reviewed by: /S/	Corey Grandits	15-Dec-2020 11:47
	eSignature	Date/Time		eSignature	
Matrices:	WATER		Carrier name:	<u>FedEx</u>	
Custody seals i Custody seals i	iner/cooler in good condition? intact on shipping container/co intact on sample bottles? X1006 Solids in hermetically s		Yes ☑ Yes ☑ Yes ☑ Yes □	No No No	Not PresentNot PresentNot PresentNot PresentNot Present
	dy present? dy signed when relinquished a e present on COC?	nd received?	Yes 🔽 Yes 🔽 Yes 🔽	No No No No No No No No No No	2 Page(s) COC IDs:229527/229526
Samples in pro Sample contain			Yes Yes Yes Yes Yes	No No No No No	
All samples rec	le volume for indicated test? eived within holding time? p Blank temperature in compli	ance?	Yes 🔽 Yes	No	
Temperature(s) Cooler(s)/Kit(s))/Thermometer(s): :		0.4C UC/C 45058		IR 25
	ple(s) sent to storage:		12/10/20 9:50		
	als have zero headspace? eptable upon receipt? :		Yes Yes Yes Yes Pablo Marinez	No No No	No VOA vials submitted N/A N/A N/A
Login Notes:	MW-45 - Bottle 4 of 4 - Samp 0.5 HNO3 on 12/9/20 @ 12:3 Lot # 313107008 After Prese	0pm by SM	ection Date/Time, logg	ged per CoC LMW	-22 Metals pH >2 (7) Preserved with
Client Contacte	ed:	Date Contacted:		Person Cor	ntacted:
Contacted By: Comments:		Regarding:			
Corrective Action	on:				

Ŵ																20		:		:									Π	ti it	 ≥	nental.
HS20120485		Norm CANNU GW QUARTERY			- ICP_TW (6020A - Total As. Cd. Pb. Se (OTY))	ICP DISS (6020A - Dissolved As Cot Ph Se (OTV) Edd									- - - - - - - - - - - - - - - - - - -											Results Due Date:	🛄 24 Hour		OC Package: (Check One Box Below)	Level 1: Ski QC X TRRP Checklist	Level 1/ SW846/CLP	Copyright 2011 by ALS Environmental
Ť	Golde Evido North	I ADIXE AND IN A I ADIXE			, TW (6020A - To	• DISS (6020A - C	MSMASD								B C D	×				×			 	×			2 Wit Ditys		D Cooler Temp.	340 8:	1825	 Any cleanges must be made in writing once samples and COC Form have been submitted to ALS Environmental. Unless otherwise agreed in a formal contract, services provided by ALS Environmental arc expressly limited to the terms and conditions stated on the reverse. The Chain of Custody is a legal document. All information must be completed accurately.
uu		~			A ICP	B ICP	0 W		Ш	 	IJ	 1		l D	A	- ··· . ×	×	×	; ×	×	×	×	×	×	×	heck Boy	5 Wk Days	Notes:	Coaler ID	45053		ndítions s
Chain of Custody Form	K	22952	ALS Project Manager:		uarterly	· · ·			ive, Sult					USAccountsPayabieInvoices@goider.ca	# Bottles	4	- - -	5	8	10	2	2	2	8	8	Required Turnaround Time; (Check Box)	×		\ \ \		9-5035	e terms and con
of Cus	10 	coc ID: 6	S Projec	5	U GW Q			1			 	:		bielnvoi	Pres.	2,8	2,8	2,8	2,8	2,8	2,8	2,8	2,8	2.8	2.8	ed Turna	STD 10 WK Days		2.7		8-4°C	inmental. Dited to th
Chain o	Page	S	AL	Project Information	Exide North CAMU GW Quarterly	130-2086-01	Golder Associates	Accounts Payable	13515 Barrett Parkway Drive, Suit		Ballwin MO 63021	(314) 984-8300	!	countsPaya	Matrix	Groundwa	Groundwa	Groundwa	Groundwa	Groundwa	Groundwa	Groundwa	Groundwa	Groundwa	Groundwa	Requi	ه ل	:	<u>ر</u>	ė.	7-Other	to ALS Enviro e expressiy lin
-	0			Projec	Exide	130-2	Golde	Accol	13515		Ballwi	(314)		USAo	Time	2	50	0	Ś	023	30	C F	2	S	40	bod	\mathbf{x}	eceived by:	Received by (Laboratory):	Checked by (Laboratory)	6-NaHSO4	ubmitted f mental arr cenrately.
Fort Collins, CO +1 970 490 1511	Holland, M1 +1 616 399 6070		i		Project Name	Project Number	Bill To Company	Invoice Attn		Aduress	City/State/Zip	Phone	Fax	e-Mail Address		20	07-1	20 12	20 2	-20 13	1-20 4	20 14	20 15	2000	-20 16	Shipment Met	LEIX	00	Receiv	Check	5-Na ₂ S ₂ O ₃ 6	'm have been sl y ALS Environ oe completed ac
					a .	Pro	Ē	 	 		0			9	Date	12-7-20	12-7-	5-7-	5-1	ι,	12-51	Ľ,Ľ	2-1	12-7	12-7		Time:	8	Time:	Time:		COC For rovided by on must b
Cincinnati, OH +I 513 733 5336	Everett, WA +1 425 356 2600		1						Drive, Sult		-			 E											9	Ś	. 1	12-8-20			SO ₄ 4-NaOH	e samples and act, services pi . All informati
0+	ш +			rmation		ļ	kates		t Parkway (63021	ĝ		2 golder.co	iption											Na Va V		5	08te	Date:	O ₃ 3-H ₂ SO ₄	writing one ormal contra al document.
	U			Customer Information	130-2086-01		Golder Associates	Emily White	13515 Barrett Parkway Drive, Suit		Ballwin, MO 63021	(314) 984-8800		Emily_White@golder.com	Sample Description			-								Print & Sign	Nal NHV		,		1-HCI 2-HNO3	nust be made in Ise ngreed in a 1 Custody is a leg.
		Š.			Purchase Order	Work Order	Company Name	Send Report To	Address		City/State/Zip	Рнопе	Fax	e-Mail Address	No.	1 MW-45	2 PMW-19R	3 LANW-B	4 LNW-17	5 LNIW-5	6 LMW-21	7 PMW-20R	8 MW-41	9 MW-47	r	Sampler(s) Please Print	A VHA	S S	Relinguished by:	Logged by (Laboratory):	Preservative Key: 1	Note: 1, Any changes m 2. Unless otherwi 3. The Chain of C

Page 34 of 36

n HS20120485	Golder Associates Exide North CAMU GW Ouarterly						ICT_UISS (00/2014 - UISSOIVED AS, Cd, Pb, Se (QTV))-FIdFI									2 2		X									Box) Dother Results Due Date:	US 🗌 2 WK Days 🚺 24 Hcur		One Box Belg	056/ TERP Chocklist OC Trans of Stat OC Trans Chocklist]	ns stated on the reverse.
Chain of Custody Form	5	coc ID: 229526	Project	Project Information	Exide North CAMU GW Quarterty A		ciates		way Drive, Stuit	<u>u</u>	Bałtwin MO 63021 G	(314) 984-8300 H		USAccountsPayableInvoices@golder.col	e Matrix Pres. # Bottles A	F Groundwa 2,8 2	: 	O Groundwa 2,8 2 X									Required Turnaround Til	C NK Daye X 5		Received by (Laboratory):	Checked by (Laboratory):	6-NaHSO4 7-Other 8-4°C 9-5035	Any changes must be made in writing once samples and COC Form have been submitted to ALS Environmental. Unless otherwise agreed in a formal contract, services provided by ALS Environmental are expressly limited to the terms and conditions stated on the reverse. The Chain of Custody is a leval document. All internation must be anywhered and are expressly limited to the terms and conditions stated on the reverse.
H Fort Collins, CO 336 +1 970 490 1511	Holland, MI 600 +1 616 399 6070				Project Name	Project Number	Bill To Company	Invoice Attn	! 	Address	City/State/Zip	Phone	Fax	e-Mail Address	Date Time	10-0-20 04	Þ. (12-7-20 133			- -		· · · · ·		 · .		Shipment Method		8		Time: Chccked	4-NaOH 5-Na2203 6-Na	d COC Form have been subm provided by ALS Environmer tion must by enumbered asset
Cincinnat, OH +1 513 733 5336	Everent, WA +1 425 356 2600			Customer Information	130-2086-01		Golder Associates	Emily White	13515 Barrett Parkway Drive, Suit		Ballwin, MD 63021	(314) 984-8800		Emily_White@golder.com	Sample Description												avent VIJ Z		$\overline{\mathbf{n}}$	Uate:	Date:	1-HCI 2-HNO ₃ 3-H ₂ SO ₄ 4-N ₆	must be made in writing once samples an wise agreed in a formal contract, services ; "Custody is a legal document. All informa-
	4				Purchase Order	Work Order	Company Name	Send Report To	Address		City/State/Zip	Phone	Fax	e-Mail Address	No.	1 LMW-22	DUP-01	27	0	4	S	9	2	8	 	10 Samneris) Please Print & Sinn	Volta to Do	Relinquisted by	Bettaruichten hu.	エン	Logged by (traboratory):	Preservative Key:	Note: 1. Any changes 2. Unless otherv 3. The Chain of

Page 35 of 36

APPENDIX D Data Usability Summaries

DATA USABILITY SUMMARY ALS WORK ORDERS: HS20081252

PROJECT NO: 20409062

CLIENT: City of Frisco Community Development Corporation

SAMPLE DATES: August 26 and 27, 2020

LABORATORY: ALS Group

WORK ORDERS: HS20081252

INTENDED USE: Second Semiannual 2020 Groundwater Monitoring Report

SITE: Former Exide Frisco Recycling Center Former Operating Plant, 7471 Old 5th Street, Frisco, TX

TESTS/METHODS

SW-846 6020A - Inductively Coupled Plasma-Mass Spectrometry (ICP/MS)

SAMPLES

Eleven water samples, one matrix spike and matrix spike duplicate sample, and one field duplicate sample were collected for the analyses of total and dissolved arsenic, cadmium, lead, and selenium. See Table 1 for the sample list.

Golder completed a review of the above chemical analysis data for conformance with the requirements of the Texas Risk Reduction Program (TRRP) guidance document, Review and Reporting of COC Concentration Data (RGG-366/TRRP-13 Revised May 2010) and for adherence to project objectives. The results of the review are discussed in this data usability summary (DUS). Golder completed the review using the following laboratory and project submittals:

- Laboratory reportable data as defined in TRRP-13;
- Laboratory review checklists (LRC) with the associated exception reports;
- Laboratory Electronic Data Deliverable (EDD); and
- Project field notes from the sampling event.

The review of the reportable data included the quality control (QC) parameters listed below, as required per TRRP-13, using the applicable analytical method and project requirements:

- Data Completeness
- Chain-of-Custody Procedures
- Sample Condition

- Field Procedures
- Results Reporting Procedures
- Field and Laboratory Blanks
- Laboratory Control Sample (LCS)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries
- Field Duplicate Precision
- Detectability Check Sample (DCS)

Additionally, Golder used the LRC to evaluate the following QC parameters:

- Method Quantitation Limits (MQLs)
- Method Detection Limits (MDLs) and Sample Detection Limits (SDLs)
- Instrument Tuning, Calibration, and Performance
- Internal Standards

Criteria used for this data usability review are as follows:

- Precision: ±MQL difference or 30% relative percent difference (RPD) for laboratory duplicates and ± 2x MQL difference (if either result is less than 5x MQL) or 30% RPD for field duplicates as recommended in TRRP-13
- Accuracy: 70-130% spike recovery (and not less than 30% or data is rejected) as recommended in TRRP-13

If an item was found outside of the review criteria, the reviewer applied a data qualifier and bias code to the results for the affected samples in accordance with TRRP-13.

LABORATORY CERTIFICATION

At the time the laboratory data were generated for this project, the laboratory was NELAC accredited under the Texas Laboratory Accreditation Program (TLAP Certification T104704231) for the matrices, methods and parameters of analysis requested on the chain-of-custody forms.

USABILITY SUMMARY

Data are usable for the intended purpose. No data were qualified due to exceedance of quality control criteria.

Reviewer:	Emily Forthaus	12/15/2020
Senior Reviewer:	Brenda Basile	12/27/2020
Senior Reviewer:	Anne Faeth-Boyd	12/30/2020

QUALITY CONTROL PARAMETERS AND OUTCOMES

Data Completeness

The laboratory data package contains necessary data (i.e., the laboratory reportable data per TRRP-13) and the EDD contains sample results in acceptable format.

Chain-of-Custody

Proper sample custody procedures were used, which confirms that the integrity of the samples was maintained. The information on the custody records is complete and agrees with that in the field notes and laboratory reports.

Sample Condition

Samples were collected in appropriate containers, properly preserved in the field, and prepared and analyzed within the holding times as required in the analytical method. No data were qualified.

Field Procedures

The samples were collected and placed immediately into laboratory supplied containers and then into a cooler with ice for overnight delivery to the laboratory.

According to the Work Plan, groundwater samples with turbidity greater than 10 nephelometric turbidity units (NTU) would be field filtered with a 10-micron filter for analyses of total metals. None of the groundwater samples collected had a turbidity greater than 10 NTU during this sampling event. For dissolved metals, samples were field filtered with a 0.45-micron filter. According to the Groundwater Sample Collection Forms, samples were filtered appropriately.

Results Reporting Procedures

Water results are reported in milligrams per liter (mg/L). Non-detects are reported using the SDL as specified per TRRP and detects between the SDL and MQL are reported with a laboratory J-flag. The concentration reported for detects between the SDL and MQL is below the calibration range and thus is considered estimated.

The dissolved metals concentrations were slightly above the total metal concentration in some samples as shown on Table 3. No results needed qualification based on total versus dissolved criteria.

Field and Laboratory Blanks

No field blanks were collected.

Method and continuing calibration blank data provided by the laboratory were evaluated. Data are qualified if the sample concentration is within five times the blank concentration. If data is qualified as estimated based on accuracy or precision criteria that was not met, the data is qualified with both a J-flag and a U-flag. Data are qualified as shown in Tables 2 and 4.

Laboratory Control Sample

The LCS recoveries (%R) are within the TRRP-13 recommended criteria of 80 -120 percent recovery (%R).

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

Golder submitted one MS/MSD for this sampling event (MW-45). The MS/MSD recoveries were within the TRRP-13 recommended criteria of 70-130%R. Precision was within the TRRP-13 recommended criteria of 30 RPD. The post-digestion spike recovery was within the TRRP-13 recommended criteria of 70-130%R. The serial dilution percent difference was within the method criteria of 10% difference.

Field Duplicate Precision

One field duplicate was collected with these samples (LMW-5/DUP-01). Field duplicate results are presented in Table 5. Duplicate precision was within the TRRP-13 recommended criteria of 30 RPD or less than two times the MQL.

Detectability Check Standards (DCS)

DCS data were provided in the laboratory report. DCS results support the sample detection limits in the laboratory report.

Instrument Tuning and Performance

According to the LRC, instrument tuning and interference check sample results met method requirements and therefore no data qualification was warranted.

Instrument Calibration

According to the LRC, calibrations were acceptable.

Internal Standards

According to the LRC, internal standard areas were acceptable.

 TABLE 1

 CROSS REFERENCE OF FIELD SAMPLE IDENTIFICATIONS AND LABORATORY IDENTIFICATIONS

Lab Sample Identification	Field Sample Identification	Sample Date	Total/Dissolved Metals	Comments
HS20081252-01	MW-45	8/26/2020	\checkmark	Matrix Spike/Matrix Spike Duplicate
HS20081252-02	PMW-19R	8/26/2020	\checkmark	
HS20081252-03	LMW-8	8/26/2020	\checkmark	
HS20081252-04	LMW-17	8/26/2020	\checkmark	
HS20081252-05	LMW-5	8/26/2020	\checkmark	
HS20081252-06	LMW-21	8/26/2020	\checkmark	
HS20081252-07	PMW-20R	8/26/2020	\checkmark	
HS20081252-08	MW-41	8/26/2020	\checkmark	
HS20081252-09	MW-47	8/26/2020	\checkmark	
HS20081252-10	LMW-9R	8/26/2020	\checkmark	
HS20081252-11	LMW-22	8/27/2020	\checkmark	
HS20081252-12	DUP-01	8/26/2020	\checkmark	Field duplicate of LMW-5

TABLE 2 - QUALIFIED DATA

Field Sample ID	Lab Sample ID	Analyte	Result	Units	Qualifier	Explanation
PMW-19R	HS20081252-02	Arsenic, total	0.000631	mg/L	U	Analyte detected in method blank, reported as non-detect at laboratory detected value (laboratory J-flag removed)
LMW-8	HS20081252-03	Arsenic, total	0.000431	mg/L	U	Analyte detected in method blank, reported as non-detect at laboratory detected value (laboratory J-flag removed)
MW-41	HS20081252-08	Arsenic, total	0.000873	mg/L	U	Analyte detected in method blank, reported as non-detect at laboratory detected value (laboratory J-flag removed)
MW-47	HS20081252-09	Arsenic, total	0.000485	mg/L	U	Analyte detected in method blank, reported as non-detect at laboratory detected value (laboratory J-flag removed)
LMW-9R	HS20081252-10	Arsenic, total	0.000554	mg/L	U	Analyte detected in method blank, reported as non-detect at laboratory detected value (laboratory J-flag removed)

Notes:

J - Estimated data; data are qualified due to exceedance of one or more quality control criteria. The reported sample concentration is the approximate concentration of the analyte in the sample.

U - Analyte not detected at associated concentration (column labeled as "Result").

mg/L - milligrams per liter

TABLE 3 - TOTAL VERSUS DISSOLVED COMPARISON

Sample	Analyte	Total Concentration (mg/L)	Dissolved Concentration (mg/L)	Precision (RPD)	MQL	Qualification
MW-45	Arsenic	< 0.000400	0.000558	33	0.0020	None; difference less than 2 times the MQL
PMW-19R	Arsenic	0.000631	0.000932	39	0.0020	None; difference less than 2 times the MQL
PMW-19R	Selenium	<0.00110	0.00146	37	0.0020	None; difference less than 2 times the MQL
LMW-8	Arsenic	0.000431	0.000492	13	0.0020	None; less than 30% RPD
LMW-17	Arsenic	< 0.000400	0.000515	25	0.0020	None; less than 30% RPD
LMW-17	Selenium	0.00138	0.00138	0.0	0.0020	None; less than 30% RPD
LMW-21	Arsenic	<0.000400	0.000571	35	0.0020	None; difference less than 2 times the MQL
LMW-21	Selenium	0.00517	0.00531	2.7	0.0020	None; less than 30% RPD
PMW-20R	Selenium	<0.00110	0.00112	1.8	0.0020	None; less than 30% RPD
LMW-9R	Arsenic	0.000554	0.000662	18	0.0020	None; less than 30% RPD
DUP-01	Arsenic	<0.000400	0.000463	15	0.0020	None; less than 30% RPD

Notes:

No qualification necessary if the difference between dissolved and total did not exceed the analytical method error (i.e., + 2x MQL difference (if either result is less than 5x MQL) or 30% RPD).

mg/L - milligrams per liter

RPD - relative percent difference

MQL - Method quantitation limit

TABLE 4 - BLANK DETECTIONS

Lab Sample ID	Analyte	Result	Qualified Concentration	Units	Explanation
ICPMS06_367741 CCB 11	Arsenic	0.000475	0.0024	mg/L	None analyte not detected
					U: total arsenic detected in samples
MBLK-156856	Arsenic	0.000408	0.0020	mg/L	HS20081252-02, -03, -08, -09, -10

Notes:

U - Not detected; the analyte was detected ${<}5x$ the concentration in an associated blank. mg/L - milligrams per liter

TABLE 5 - FIELD DUPLICATE PRECISION CALCULATIONS

Duplicate and Parent Sample Field Identification	Analyte	Sample Result	Duplicate Result	RPD ^a	Qualifier	Qualifier Added
	Arsenic, dissolved	0.000400 U	0.000463 J	15	А	None
LMW-5/DUP-01	Lead, total	0.00114 J	0.00126 J	10	A	None

Notes:

^a Relative Percent Difference (RPD) = ((SR - DR)*200)/(SR + DR), where SR is the sample result and DR is the duplicate result.

A - Acceptable Data

The RPD test (<30%) applies if both results are greater than 5x MQL. Otherwise, the absolute difference test (< 2x MQL) applies.

NA - Not applicable

MQL - Method quantitation limit

SDL - Sample detection limit

mg/L - milligrams per liter

J - estimated value; detected between the MQL and SDL.

U - not detected; analyte was detected below SDL.

DATA USABILITY SUMMARY ALS WORK ORDERS: HS20120485

PROJECT NO: 20409062

CLIENT: City of Frisco Community Development Corporation

SAMPLE DATES: December 7-8, 2020

LABORATORY: ALS Group

WORK ORDERS: HS20120485

INTENDED USE: Second Semiannual 2020 Groundwater Monitoring Report

SITE: Former Exide Frisco Recycling Center Former Operating Plant, 7471 Old 5th Street, Frisco, TX

TESTS/METHODS

SW-846 6020A - Inductively Coupled Plasma-Mass Spectrometry (ICP/MS)

SAMPLES

Eleven water samples, one matrix spike and matrix spike duplicate sample, and one field duplicate sample were collected for the analyses of total and dissolved arsenic, cadmium, lead, and selenium. See Table 1 for the sample list.

Golder completed a review of the above chemical analysis data for conformance with the requirements of the Texas Risk Reduction Program (TRRP) guidance document, Review and Reporting of COC Concentration Data (RGG-366/TRRP-13 Revised May 2010) and for adherence to project objectives. The results of the review are discussed in this data usability summary (DUS). Golder completed the review using the following laboratory and project submittals:

- Laboratory reportable data as defined in TRRP-13;
- Laboratory review checklists (LRC) with the associated exception reports;
- Laboratory Electronic Data Deliverable (EDD); and
- Project field notes from the sampling event.

The review of the reportable data included the quality control (QC) parameters listed below, as required per TRRP-13, using the applicable analytical method and project requirements:

- Data Completeness
- Chain-of-Custody Procedures
- Sample Condition

 TABLE 1

 CROSS REFERENCE OF FIELD SAMPLE IDENTIFICATIONS AND LABORATORY IDENTIFICATIONS

Lab Sample Identification	Field Sample Identification	Sample Date	Total/Dissolved Metals	Comments
HS20120485-01	MW-45	12/07/2020	\checkmark	Matrix Spike/Matrix Spike Duplicate
HS20120485-02	PMW-19R	12/07/2020	\checkmark	
HS20120485-03	LMW-8	12/07/2020	\checkmark	
HS20120485-04	LMW-17	12/07/2020	\checkmark	
HS20120485-05	LMW-5	12/07/2020	\checkmark	
HS20120485-06	LMW-21	12/07/2020	\checkmark	
HS20120485-07	PMW-20R	12/07/2020	\checkmark	
HS20120485-08	MW-41	12/07/2020	\checkmark	
HS20120485-09	MW-47	12/07/2020	\checkmark	
HS20120485-10	LMW-9R	12/07/2020	\checkmark	
HS20120485-11	LMW-22	12/08/2020	\checkmark	
HS20120485-12	DUP-01	12/07/2020	✓	Field duplicate of LMW-5

TABLE 2 - QUALIFIED DATA

Field Sample ID	Lab Sample ID	Analyte	Result	Units	Qualifier	Explanation
				No qua	alifications n	ecessary.

TABLE 3 - TOTAL VERSUS DISSOLVED COMPARISON

Sample	Analyte	Total Concentration (mg/L)	Dissolved Concentration (mg/L)	Precision (RPD)	MQL	Qualification
LMW-8	Selenium	0.00695	0.00748	7.3	0.0020	None; less than 30% RPD
LMW-17	Arsenic	0.000663	0.000675	1.8	0.0020	None; less than 30% RPD
LMW-9R	Arsenic	0.00198	0.00210	5.9	0.0020	None; less than 30% RPD
LMW-9R	Selenium	0.00311	0.00313	0.64	0.0020	None; less than 30% RPD
DUP-01	Lead	< 0.000600	0.00102	52	0.0020	None; Difference is <2X MCL

Notes:

No qualification necessary if the difference between dissolved and total did not exceed the analytical method error (i.e., + 2x MQL difference (if either result is less than 5x MQL) or 30% RPD).

mg/L - milligrams per liter

RPD - relative percent difference

MQL - Method quantitation limit

TABLE 4 - FIELD DUPLICATE PRECISION CALCULATIONS

Duplicate and Parent Sample Field Identification	Analyte	Sample Result	Duplicate Result	RPD ^a	MQL	Qualifier	Qualifier Added
	Arsenic, total	0.00106 J	0.000655 J	47	0.0020	А	None; absolute difference <2X MQL
	Arsenic, dissolved	0.000626 J	0.000650 J	3.8	0.0020	А	None; absolute difference <2X MQL
LMW-5/DUP-01	Lead, total	0.000725 J	0.000600 U	19	0.0020	А	None; absolute difference <2X MQL
	Lead, dissolved	0.000600 U	0.00102 J	52	0.0020	А	None; absolute difference <2X MQL
	Selenium, total	0.00164 J	0.00110 U	39	0.0020	А	None; absolute difference <2X MQL

Notes:

^a Relative Percent Difference (RPD) = ((SR - DR)*200)/(SR + DR), where SR is the sample result and DR is the duplicate result.

A - Acceptable Data

The RPD test (<30%) applies if both results are greater than 5x MQL. Otherwise, the absolute difference test (< 2x MQL) applies.

NA - Not applicable

MQL - Method quantitation limit

SDL - Sample detection limit

mg/L - milligrams per liter

J - estimated value; detected between the MQL and SDL.

U - not detected; analyte was detected below SDL.

- Field Procedures
- Results Reporting Procedures
- Field and Laboratory Blanks
- Laboratory Control Sample (LCS)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries
- Field Duplicate Precision
- Detectability Check Sample (DCS)

Additionally, Golder used the LRC to evaluate the following QC parameters:

- Method Quantitation Limits (MQLs)
- Method Detection Limits (MDLs) and Sample Detection Limits (SDLs)
- Instrument Tuning, Calibration, and Performance
- Internal Standards

Criteria used for this data usability review are as follows:

- Precision: ±MQL difference or 30% relative percent difference (RPD) for laboratory duplicates and ± 2x MQL difference (if either result is less than 5x MQL) or 30% RPD for field duplicates as recommended in TRRP-13
- Accuracy: 70-130% spike recovery (and not less than 30% or data is rejected) as recommended in TRRP-13

If an item was found outside of the review criteria, the reviewer applied a data qualifier and bias code to the results for the affected samples in accordance with TRRP-13. No data were qualified due to quality control exceedances (Table 2).

LABORATORY CERTIFICATION

At the time the laboratory data were generated for this project, the laboratory was NELAC accredited under the Texas Laboratory Accreditation Program (TLAP Certification T104704231) for the matrices, methods and parameters of analysis requested on the chain-of-custody forms.

USABILITY SUMMARY

Data are usable for the intended purpose. No data were qualified due to exceedance of quality control criteria.

Reviewer:	Emily Forthaus	12/22/2020
Senior Reviewer:	Brenda Basile	12/27/2020
Senior Reviewer:	Anne Faeth-Boyd	12/30/2020

QUALITY CONTROL PARAMETERS AND OUTCOMES

Data Completeness

The laboratory data package contains necessary data (i.e., the laboratory reportable data per TRRP-13) and the EDD contains sample results in acceptable format.

Chain-of-Custody

Proper sample custody procedures were used, which confirms that the integrity of the samples was maintained. The information on the custody records is complete and agrees with that in the field notes and laboratory reports.

Sample Condition

Samples were collected in appropriate containers, properly preserved in the field, and prepared and analyzed within the holding times as required in the analytical method. No data were qualified.

Field Procedures

The samples were collected and placed immediately into laboratory supplied containers and then into a cooler with ice for overnight delivery to the laboratory.

According to the Work Plan, groundwater samples with turbidity greater than 10 nephelometric turbidity units (NTU) would be field filtered with a 10-micron filter for analyses of total metals. None of the groundwater samples collected had a turbidity greater than 10 NTU during this sampling event. For dissolved metals, samples were field filtered with a 0.45-micron filter. According to the Groundwater Sample Collection Forms, samples were filtered appropriately.

Results Reporting Procedures

Water results are reported in milligrams per liter (mg/L). Non-detects are reported using the SDL as specified per TRRP and detects between the SDL and MQL are reported with a laboratory J-flag. The concentration reported for detects between the SDL and MQL is below the calibration range and thus is considered estimated.

The dissolved metals concentrations were slightly above the total metal concentration in some samples as shown on Table 3. No results needed qualification based on total versus dissolved criteria.

Field and Laboratory Blanks

No field blanks were collected.

Method and continuing calibration blank data provided by the laboratory were evaluated. Data are qualified if the sample concentration is within five times the blank concentration. If data is qualified as estimated based on accuracy or precision criteria that was not met, the data is qualified with both a J-flag and a U-flag. No results needed qualification based on blanks.

Laboratory Control Sample

The LCS recoveries (%R) are within the TRRP-13 recommended criteria of 80 -120 percent recovery (%R).

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

Golder submitted one MS/MSD for this sampling event (MW-45). The MS/MSD recoveries were within the TRRP-13 recommended criteria of 70-130%R. Precision was within the TRRP-13 recommended criteria of 30 RPD. The post-digestion spike recovery was within the TRRP-13 recommended criteria of 70-130%R. The serial dilution percent difference was within the method criteria of 10% difference.

Field Duplicate Precision

One field duplicate was collected with these samples (LMW-5/DUP-01). Field duplicate results are presented in Table 4. Duplicate precision was within the TRRP-13 recommended criteria of 30 RPD or less than two times the MQL.

Detectability Check Standards (DCS)

DCS data were provided in the laboratory report. DCS results support the sample detection limits in the laboratory report.

Instrument Tuning and Performance

According to the LRC, instrument tuning and interference check sample results met method requirements and therefore no data qualification was warranted.

Instrument Calibration

According to the LRC, calibrations were acceptable.

Internal Standards

According to the LRC, internal standard areas were acceptable.

golder.com