

April 17, 2024

Project No. GL20409062.001

Mack Borchardt

City of Frisco 6101 Frisco Square Boulevard Frisco, Texas 75034

RE: 2024 FIRST QUARTER FRENCH DRAIN OPERATIONAL REPORT, FRISCO COMMUNITY DEVELOPMENT CORPORATION SITE, 7471 OLD FIFTH STREET, FRISCO, TEXAS

Dear Mr. Borchardt,

WSP USA Inc. (WSP) has prepared this quarterly operational report for the French Drain System (FDS) at the City of Frisco Community Development Corporation (Frisco CDC) facility located at 7471 Old Fifth Street in Frisco, Texas (Site). This report has been prepared in response to the Texas Commission on Environmental Quality (TCEQ) comments to Exide Technologies, Inc. (Exide) on the 2013 Affected Property Assessment Report (APAR) dated October 8th, 2013, which requested additional information regarding the performance of the French Drain and the TCEQ comments to Exide for the 2014 APAR dated May 5, 2015, which requested quarterly reports on the operation of the FDS. This work is being continued under new ownership by the City of Frisco CDC.

This report includes general FDS background information and summarizes the operation of the FDS system during the first quarter 2024. Specifically, the quarterly report includes a discussion of the performance of the system, gallons of water intercepted, concentrations of constituents in the water, the presence and/or absence of leakage along the flood wall into Stewart Creek, the presence or absence of white crystalline substance and sample results (if applicable), and a determination as to whether ongoing discharges to Stewart Creek are continuing to occur. As stated in previous quarterly reports, survey data for the French Drain and Stewart Creek and specific notes on which days the French Drain was pumped, as requested by the TCEQ, are included in this report.

1.0 FRENCH DRAIN SYSTEM HISTORY

According to historical information contained in the French Drain Construction Report (W&M Environmental Group, Inc. [W&M], 2013), the concrete retaining wall along the southern edge of the operating area was constructed in the late 1980s to keep Stewart Creek floodwaters from entering the operating portion of the facility and to retain storm water from the operating portion of the facility for subsequent collection and treatment at the onsite water treatment plants. After construction of the retaining wall, areas of seepage along the Stewart Creek side of the retaining wall were previously observed by Exide and its consultants; primarily between the Battery Receiving Building and the Slag Treatment Building. In response, Exide sealed numerous cracks in the retaining wall. In 2011, W&M designed the FDS and associated repairs to drain any water that collected below the pavement on the north side of the FDS and eliminate seepage through the flood wall. Water from the FDS is

pumped to mobile storage tanks adjacent to the wastewater treatment area for offsite disposal to the North Texas Municipal Water District Wastewater Treatment Works in accordance with Industrial User Permit Number FCD-240607. Additional FDS information, including system specifications, is included in the June 2014 French Drain Monitoring Plan (FDMP) that was previously provided to the TCEQ.

2.0 DESCRIPTION OF MONITORING AND INSPECTION ACTIVITIES

Activities completed during the first quarter of 2024 included the following:

- Daily (weekday) Inspections and Maintenance Inspection of the flowmeter and recording flow rate and totalizer reading.
- Weekly Inspections and Maintenance Inspection and maintenance of the FDS collection sump.
- Quarterly Inspections and Maintenance
 - Inspection of the FDS for sedimentation.
 - Inspection of the Flood Wall waterstop and joint fillers.
 - Inspection of the Flood Wall for signs of seepage through the wall, cracks, or other signs of damage.

Monitoring and inspection activities completed for the FDS in accordance with the FDMP during the first quarter 2024 were completed by both City of Frisco Site personnel as well as WSP staff. City of Frisco Site personnel conducted daily and weekly activities, and WSP personnel conducted the quarterly inspection. A more detailed description of the results of data collection activities and inspections is included in Section 3.0 below.

3.0 OBSERVATIONS AND RESULTS

3.1 Gallons of Water Intercepted

The flow rate and totalizer readings for the FDS were generally recorded each weekday. Table 1 summarizes the recorded flows of the FDS, and the offsite daily precipitation based on data recorded at a Frisco weather station (data obtained from https://www.wunderground.com/dashboard/pws/KTXDALLA25).

3.2 Groundwater and Perched Water Level Observations

Water levels for MW-26 and MW-29 were measured and recorded during the first quarter 2024. Monitoring wells MW-31 through MW-35 and MW-46 were plugged and abandoned in January 2024 as prescribed in the approved Response Action Plan (RAP – approval finalized with the issuance of the RCRA Part B Permit) to allow for placement of response action soils on the Remediation Consolidation Area (RCA) and in preparation for the construction of the proposed groundwater remedy (Funnel and Permeable Reactive Barrier). Table 2 summarizes the groundwater depths and elevations from this sampling event as well as previous data and includes the elevations of the banks and bottom of Stewart Creek at transects located near the upstream, midpoint and downstream end of the FDS. Monitoring well locations, transect locations and Stewart Creek elevations are shown on Figure 1. Water levels were lower when compared to the fourth quarter 2023, ranging from 0.27 ft to 0.36 ft lower than from the previous quarter.

Mack Borchardt Project No. GL20409062.001
City of Frisco April 17, 2024

3.3 Floodwall Seepage

No floodwall seepage was observed during the weekly or quarterly inspections and no routine maintenance was required to repair peeling sealants on cracks or expansion joints.

3.4 White Crystalline Material Observations

White crystalline material (that has been previously reported) was not observed on the flood wall during the WSP inspection conducted on March 4, 2024. As such, no samples of white crystalline material were collected or analyzed.

3.5 Laboratory Analytical Results

FDS water samples were collected by City of Frisco Site personnel February 15, 2024. Analytical results are summarized in Table 3 and the laboratory report is provided in Attachment A. The first quarter 2024 sample results for metals and general chemistry were generally similar to the fourth quarter 2023 sample, with the exception of additional reported detections of cadmium, iron, lead and manganese. However, these metals were reported in the sample collected during the third quarter 2023 at similar concentrations.

Based on the results of the inspection and monitoring activities for the first quarter 2024 described above, the FDS appears to be operating as designed.

Mack Borchardt Project No. GL20409062.001
City of Frisco April 17, 2024

4.0 CLOSURE

WSP appreciates the opportunity to assist the City of Frisco Community Development Corporation with this project. Please contact us if you have any questions or comments concerning this quarterly operational report.

Sincerely,

WSP USA Inc.

Catherine Mear, GIT

Consultant, Environmental Scientist, GIT

Timothy P. Jennings, PG(TX)

Assistant Vice President, Geologist

CAM/TJ

CC: Jerry Wick, Texas Commission on Environmental Quality

Brad Weaver - JEM Connections LLC (City of Frisco)

Attachments: Table 1: French Drain Daily Flow Volumes

Table 2: Perched and Groundwater Monitoring Well Water Elevations

Table 3: French Drain Water Analytical Data

Figure 1: Stewart Creek Transects

Attachment A: French Drain Water Laboratory Analytical Results

French Drain Daily Flow Volumes

Jan-24			Feb-24			Mar-24		
Total Flow/Water Removed (g	al)	Total Precip (in)	Total Flow/Water Removed (g	jal)	Total Precip (in)	Total Flow/Water Removed (gal) Pro		Total Precip (in)
15,340		2.62	9,432		1.50	15,594		4.06
Date	Daily Flow (gal)	Daily Precip (in)	Daily Flow (gal) Daily Precip (in)		Date	Daily Flow (gal)	Daily Precip (in)	
Monday, January 1, 2024	194	0.00	Thursday, February 1, 2024	251	0.00	Friday, March 1, 2024	61	0.00
Tuesday, January 2, 2024	212	0.27	Friday, February 2, 2024	196	0.46	Saturday, March 2, 2024	140	0.00
Wednesday, January 3, 2024	596	0.00	Saturday, February 3, 2024	1,086	0.17	Sunday, March 3, 2024	152	0.00
Thursday, January 4, 2024	430	0.00	Sunday, February 4, 2024	583	0.12	Monday, March 4, 2024	131	0.00
Friday, January 5, 2024	643	0.33	Monday, February 5, 2024	381	0.00	Tuesday, March 5, 2024	63	0.00
Saturday, January 6, 2024	695	0.00	Tuesday, February 6, 2024	372	0.00	Wednesday, March 6, 2024	101	0.00
Sunday, January 7, 2024	534	0.01	Wednesday, February 7, 2024	252	0.00	Thursday, March 7, 2024	80	1.20
Monday, January 8, 2024	343	0.46	Thursday, February 8, 2024	248	0.00	Friday, March 8, 2024	923	0.03
Tuesday, January 9, 2024	1,247	0.00	Friday, February 9, 2024	148	0.00	Saturday, March 9, 2024	371	0.00
Wednesday, January 10, 2024	758	0.00	Saturday, February 10, 2024	149	0.16	Sunday, March 10, 2024	217	0.00
Thursday, January 11, 2024	391	0.00	Sunday, February 11, 2024	923	0.48	Monday, March 11, 2024	244	0.00
Friday, January 12, 2024	281	0.00	Monday, February 12, 2024	677	0.00	Tuesday, March 12, 2024	155	0.00
Saturday, January 13, 2024	79	0.00	Tuesday, February 13, 2024	506	0.00	Wednesday, March 13, 2024	165	0.00
Sunday, January 14, 2024	0	0.00	Wednesday, February 14, 2024	486	0.00	Thursday, March 14, 2024	106	0.23
Monday, January 15, 2024	0	0.00	Thursday, February 15, 2024	401	0.00	Friday, March 15, 2024	751	0.65
Tuesday, January 16, 2024	0	0.00	Friday, February 16, 2024	208	0.00	Saturday, March 16, 2024	1761	0.90
Wednesday, January 17, 2024	0	0.00	Saturday, February 17, 2024	50	0.00	Sunday, March 17, 2024	2222	0.01
Thursday, January 18, 2024	0	0.00	Sunday, February 18, 2024	0	0.00	Monday, March 18, 2024	1370	0.00
Friday, January 19, 2024	542	0.00	Monday, February 19, 2024	704	0.00	Tuesday, March 19, 2024	1511	0.00
Saturday, January 20, 2024	0	0.00	Tuesday, February 20, 2024	420	0.00	Wednesday, March 20, 2024	491	0.00
Sunday, January 21, 2024	0	0.09	Wednesday, February 21, 2024	250	0.00	Thursday, March 21, 2024	380	0.47
Monday, January 22, 2024	723	0.47	Thursday, February 22, 2024	202	0.00	Friday, March 22, 2024	841	0.00
Tuesday, January 23, 2024	1,469	0.27	Friday, February 23, 2024	206	0.00	Saturday, March 23, 2024	640	0.00
Wednesday, January 24, 2024	1,495	0.03	Saturday, February 24, 2024	98	0.00	Sunday, March 24, 2024	313	0.00
Thursday, January 25, 2024	555	0.01	Sunday, February 25, 2024	163	0.00	Monday, March 25, 2024	483	0.57
Friday, January 26, 2024	424	0.19	Monday, February 26, 2024	161	0.00	Tuesday, March 26, 2024	447	0.00
Saturday, January 27, 2024	1,721	0.48	Tuesday, February 27, 2024	103	0.00	Wednesday, March 27, 2024	679	0.00
Sunday, January 28, 2024	885	0.01	Wednesday, February 28, 2024	105	0.00	Thursday, March 28, 2024	83	0.00
Monday, January 29, 2024	461	0.00	Thursday, February 29, 2024	103	0.11	Friday, March 29, 2024	203	0.00
Tuesday, January 30, 2024	360	0.00				Saturday, March 30, 2024	252	0.00
Wednesday, January 31, 2024	302	0.00				Sunday, March 31, 2024	258	0.00

Notes:

1 - As denoted, precipitation data obtained from https://www.wunderground.com/history/monthly/us/tx/frisco/KDAL/ (Dallas Love field), otherwise precipitation data primarily obtained from: https://www.wunderground.com/dashboard/pws/KTXDALLA25 (Frisco). Daily flow volumes provided by the Site.

Prepared by: SD 1/4/2024 Checked by: CM 4/11/2024 Reviewed by: TJ 4/11/2024

		St	ewart Creek Eleva	ations	
Cum	ey Point		Measurement		Elevation
	ey Polit		Date		(ft msl)
Transect 1			0./7/2016		620.74
Top of North Bank Toe of North Bank			3/7/2016 3/7/2016		628.74 624.79
Creek Centerline			3/7/2016		622.79
Toe of South Bank			3/7/2016		624.27
Top of South Bank			3/7/2016		634.09
Transect 2					
Top of North Bank			3/7/2016 3/7/2016		627.97
Toe of North Bank Toe of South Bank					623.57 624.04
Top of South Bank			3/7/2016 3/7/2016		630.52
Transect 3			5/1/2010		
Top of North Bank			3/7/2016		628.20
Toe of North Bank			3/7/2016		622.70
Toe of South Bank			3/7/2016		622.88 628.18
Top of South Bank	TCC	C	3/7/2016	Double L	020.10
Well ID	TOC Elevation	Screen Interval	Measurement	Depth to Groundwater	Groundwater Elevation
1011 26	(ft msl)	(ft bgs)	Date	(ft btoc)	(ft msl)
MW-26	631.93	5-15	3/11/2013	9.98 9.52	621.95 622.41
(Groundwater)			4/5/2013 4/29/2013	9.52 9.21	622.41
			1/21/2014	5.80	626.13
			7/29/2014	5.79	626.14
			9/23/2014	8.9	623.03
			6/12/2015	5.32	626.61
			9/8/2015	5.72	626.21
			12/17/2015	5.32	626.61
			2/29/2016	5.41 5.47	626.52 626.46
			6/1/2016 9/8/2016	5.51	626.42
			12/2/2016	5.65	626.28
			3/2/2017	5.81	626.12
			5/4/2017	6.21	625.72
			8/28/2017	5.56	626.37
			11/27/2017	5.71 5.75	626.22
			2/15/2018 5/9/2018	5.75 5.65	626.18 626.28
			9/24/2018	NA	NA
			12/4/2018	5.60	626.33
			3/7/2019	5.64	626.29
			6/3/2019	5.92	626.01
			9/9/2019	5.87	626.06
			12/2/2019 2/26/2020	5.63 5.71	626.30 626.22
			5/27/2020	4.67	627.26
			8/27/2020	6.12	625.81
			12/8/2020	5.41	626.52
			3/4/2021	5.62	626.31
			6/2/2021	5.56	626.37
			8/30/2021	5.56	626.37
			12/9/2021	5.46 5.63	626.47
			3/3/2022 6/1/2022	5.62 5.59	626.31 626.34
			9/20/2022	8.16	623.77
			11/29/2022	8.02	623.91
			3/16/2023	6.29	625.64
			5/31/2023	4.79	627.14
			9/12/2023	5.67	626.26
			11/30/2023	5.47	626.46
	l	l	3/4/2024	5.74	626.19

	тос	Screen		Depth to	
Well ID	Elevation	Interval	Measurement	Groundwater	Groundwater Elevation
MM 20	(ft msl)	(ft bgs)	Date	(ft btoc)	(ft msl)
MW-29 (Groundwater)	633.51	4.5-14.5	3/11/2013 4/5/2013	13.08 6.96	620.43 626.55
, ,			4/29/2013	6.56	626.95
			1/21/2014 7/29/2014	6.62 6.57	626.89 626.94
			9/23/2014	6.04	627.47
			6/12/2015	5.21	628.30
			9/8/2015 12/17/2015	6.35 5.67	627.16 627.84
			2/29/2016	5.79	627.72
			6/1/2016	5.69	627.82 627.84
			9/8/2016 12/2/2016	5.67 6.25	627.26
			3/2/2017	6.51	627.00
			5/4/2017 8/28/2017	5.80 5.90	627.71 627.61
			11/27/2017	6.77	626.74
			2/15/2018	6.77	626.74
			5/9/2018 9/24/2018	5.95 NA	627.56 NA
			12/4/2018	6.12	627.39
			3/7/2019	6.07	627.44
			6/3/2019 9/9/2019	6.27 6.25	627.24 627.26
			12/2/2019	6.27	627.24
			2/26/2020 5/27/2020	5.18 5.09	628.33 628.42
			8/27/2020	6.96	626.55
			12/8/2020	6.06	627.45
			3/4/2021 6/2/2021	6.12 6.09	627.39 627.42
			8/30/2021	6.12	627.39
			12/9/2021	6.12	627.39
			3/3/2022 6/1/2022	6.27 5.06	627.24 628.45
			9/20/2022	9.06	624.45
			11/29/2022 3/16/2023	8.91 7.13	624.60 626.38
			5/31/2023	5.34	628.17
			9/12/2023	6.29	627.22
			11/30/2023 3/4/2024	6.03 6.39	627.48 627.12
MW-31 (Groundwater)	636.71	8-23	5/13/2013	10.58	626.13
(Groundwater)			1/21/2014 7/29/2014	10.87 10.81	625.84 625.90
			9/23/2014	11.32	625.39
			6/12/2015 9/8/2015	9.61 10.53	627.10 626.18
			12/17/2015	9.42	627.29
			2/29/2016	9.78	626.93
			6/1/2016 9/8/2016	9.82 9.90	626.89 626.81
			12/2/2016	10.21	626.50
			3/2/2017 5/4/2017	12.23 10.58	624.48 626.13
			8/28/2017	9.99	626.72
			11/27/2017	10.82	625.89
			2/15/2018 5/9/2018	10.90 10.19	625.81 626.52
			9/24/2018	NA	NA
[12/4/2018 3/7/2019	10.42 10.13	626.29 626.58
[6/3/2019	10.13	626.40
[9/9/2019	10.51	626.20
			12/2/2019 2/26/2020	9.85 8.96	626.86 627.75
			5/27/2020	8.54	628.17
			8/27/2020 12/8/2020	10.56 9.71	626.15 627.00
			3/4/2021	9.79	626.92
			6/2/2021	9.86	626.85
			8/30/2021 12/9/2021	9.56 9.67	627.15 627.04
			3/3/2022	9.86	626.85
			6/1/2022	8.76	627.95 623.49
			9/30/2022 11/29/2022	13.22 13.06	623.49 623.65
			3/16/2023	11.06	625.65
1			5/31/2023 9/12/2023	9.06 9.96	627.65 626.75
			11/30/2023	9.81	626.90
		Plugged	d and Abandoned Ja	nuary 2024	

	тос	Screen		Depth to	
Well ID	Elevation	Interval	Measurement	Groundwater	Groundwater Elevation
	(ft msl)	(ft bgs)	Date	(ft btoc)	(ft msl)
MW-32	630.96	2.5-5	1/21/2014	4.16	626.80
(Perched)			7/29/2014 9/23/2014	4.59 4.59	626.37 626.37
			6/12/2015	3.79	627.17
			9/8/2015	R	R
			2/29/2016	3.57	627.39 627.34
			6/1/2016 9/8/2016	3.62 3.83	627.13
			12/2/2016	3.40	627.56
			3/2/2017	3.26	627.70
			5/4/2017 8/28/2017	3.49 3.55	627.47 627.41
			11/27/2017	3.54	627.42
			2/15/2018	3.21	627.75
			5/9/2018	3.30	627.66
			9/24/2018 12/4/2018	NA 2.70	NA 628.26
			3/7/2019	3.88	627.08
			6/3/2019	3.67	627.29
			9/9/2019	3.92	627.04
			12/2/2019	3.32	627.64
			2/26/2020 5/27/2020	2.92 2.39	628.04 628.57
			8/27/2020	3.86	627.10
			12/8/2020	3.16	627.80
			3/4/2021 6/2/2021	3.29 3.19	627.67 627.77
			8/30/2021	3.19	627.77
			12/9/2021	3.24	627.72
			3/3/2022	3.31	627.65
			6/1/2022	2.77	628.19
			9/20/2022 11/29/2022	4.69 4.52	626.27 626.44
			3/16/2023	2.43	628.53
			5/31/2023	2.71	628.25
			9/12/2023	3.41	627.55
		l Pluaaea	11/30/2023 and Abandoned Ja	3.27 nuary 2024	627.69
MW-33	632.59	2.5-5	1/21/2014	1.09	631.50
(Perched)			7/29/2014	2.14	630.45
			9/23/2014 12/17/2015	1.55 1.21	631.04 631.38
			2/29/2016	1.07	631.52
			6/1/2016	1.09	631.50
			9/8/2016	1.07	631.52
			12/2/2016 3/2/2017	0.95 0.88	631.64 631.71
			5/4/2017	0.91	631.68
			8/28/2017	0.86	631.73
			11/27/2017	0.85	631.74
			2/15/2018 5/9/2018	0.81 0.80	631.78 631.79
			9/24/2018	NA	NA NA
			12/4/2018	0.95	631.64
			3/7/2019	0.64	631.95
			6/3/2019 9/9/2019	0.92 1.13	631.67 631.46
			12/2/2019	0.33	632.26
			2/26/2020	0.39	632.20
			5/27/2020	0.16 0.99	632.43 631.60
			8/27/2020 12/8/2020	0.99	631.60
			3/4/2021	0.72	631.87
			6/2/2021	0.61	631.98
			8/30/2021 12/9/2021	0.26 0.71	632.33 631.88
			3/3/2022	0.71	631.88
			6/1/2022	0.56	632.03
			9/20/2022	2.77	629.82
			11/29/2022	2.79	629.80 631.63
			3/16/2023 5/31/2023	0.96 0.17	632.42
			9/12/2023	0.47	632.12
			11/30/2023	0.26	632.33
		Plugged	l and Abandoned Ja	nuary 2024	

	тос	Screen	Measurement	Depth to	Groundwater Elevation
Well ID	Elevation (ft msl)	Interval		Groundwater (ft btoc)	
MW-34	632.83	(ft bgs) 2.5-5	Date 1/21/2014	4.31	(ft msl) 628.52
(Perched)	032.03	2.5 5	7/29/2014	4.45	628.38
			9/23/2014	4.45	628.38
			6/12/2015 12/17/2015	3.42 3.03	629.41 629.80
			2/29/2016	1.95	630.88
			6/1/2016	2.04	630.79
			9/8/2016 12/2/2016	2.59 2.50	630.24 630.33
			3/2/2017	2.75	630.08
			5/4/2017	3.93	628.90
			8/28/2017	2.95	629.88 629.21
			11/27/2017 2/15/2018	3.62 3.71	629.12
			5/9/2018	3.57	629.26
			9/24/2018	NA 2.00	NA COO 75
			12/4/2018 3/7/2019	3.08 3.41	629.75 629.42
			6/3/2019	3.17	629.66
			9/9/2019	3.31	629.52
			12/2/2019 2/26/2020	2.89 1.37	629.94 631.46
			5/27/2020	1.86	630.97
			8/27/2020	3.49	629.34
			12/8/2020	2.58	630.25
			3/4/2021 6/2/2021	2.76 2.67	630.07 630.16
			8/30/2021	2.73	630.10
			12/9/2021	2.51	630.32
			3/3/2022 6/1/2022	2.69 1.26	630.14 631.57
			9/20/2022	4.16	628.67
			11/29/2022	4.26	628.57
			3/16/2023	2.11	630.72
			5/31/2023 9/12/2023	2.06 2.96	630.77 629.87
			11/30/2023	2.72	630.11
MM 25	622.55		and Abandoned Ja		I DDV
MW-35 (Perched)	632.55	2.5-5	1/21/2014 7/29/2014	DRY DRY	DRY DRY
(i ci ciicu)			9/23/2014	DRY	DRY
			6/12/2015	4.97	627.58
			9/8/2015 12/17/2015	DRY 4.10	DRY 628.45
			2/29/2016	3.86	628.69
			6/1/2016	3.99	628.56
			9/8/2016	4.13	628.42
			12/2/2016 3/2/2017	3.85 3.94	628.70 628.61
			5/4/2017	4.58	627.97
			8/28/2017	4.16	628.39
			11/27/2017 2/15/2018	3.98 3.81	628.57 628.74
			5/9/2018	3.92	628.63
			9/24/2018	NA	NA
			12/4/2018	3.74	628.81 628.90
			3/7/2019 6/3/2019	3.65 3.91	628.64
			9/9/2019	4.05	628.50
			12/2/2019	4.06	628.49
			2/26/2020 5/27/2020	3.89 2.95	628.66 629.60
			8/27/2020	4.52	628.03
			12/8/2020	4.06	628.49
			3/4/2021 6/2/2021	4.22 4.19	628.33 628.36
			8/30/2021	3.92	628.63
			12/9/2021	4.12	628.43
			3/3/2022	4.29 3.77	628.26 628.78
			6/1/2022 9/20/2022	3.77 4.34	628.78
			11/29/2022	4.17	628.38
			3/16/2023	2.41	630.14
			5/31/2023 9/12/2023	3.21 4.16	629.34 628.39
			11/30/2023	4.03	628.52
		Plugged	and Abandoned Ja		

	TOC	Screen	Measurement	Depth to	Groundwater Elevation
Well ID	Elevation	Interval		Groundwater	
	(ft msl)	(ft bgs)	Date	(ft btoc)	(ft msl)
MW-46	630.98	10-20	1/21/2014	5.21	625.77
(Groundwater)			7/29/2014	5.47	625.51
			9/23/2014	5.08	625.90
			6/12/2015	5.50	625.48
			9/8/2015	4.17	626.81
			2/29/2016	5.23	625.75
			6/1/2016	5.30	625.68
			9/8/2016	5.41	625.57
			12/2/2016	4.96	626.02
			3/2/2017	5.00	625.98
			5/4/2017	5.50	625.48
			8/28/2017	4.44	626.54
			11/27/2017	5.41	625.57
			2/15/2018	5.81	625.17
			5/9/2018	4.24	626.74
			9/24/2018	NA	NA
			12/4/2018	4.61	626.37
			3/7/2019	4.29	626.69
			6/3/2019	4.61	626.37
			9/9/2019	4.41	626.57
			12/2/2019	4.32	626.66
			2/26/2020	3.29	627.69
			5/27/2020	3.26	627.72
			8/27/2020	4.89	626.09
			12/8/2020	4.21	626.77
			3/4/2021	4.42	626.56
			6/2/2021	4.39	626.59
			8/30/2021	4.17	626.81
			12/9/2021	4.16	626.82
			3/3/2022	4.38	626.60
			6/1/2022	3.06	627.92
			9/20/2022	6.12	624.86
			11/29/2022	5.96	625.02
			3/16/2023	4.39	626,59
			5/31/2023	3.46	627.52
			9/12/2023	4.39	626.59
		Plugger	11/30/2023 I and Abandoned Ja	4.31	626.67

Notes:

- Notes:
 Prepared by: S

 1. bgs below ground surface.
 Checked by: CM
 Reviewed by: TJ

 3. btoc below top of casing.
 4. R depth to groundwater was disqualified as a field error because depth was greater than total depth of the well.
 5. NA not accessible due to Site conditions.

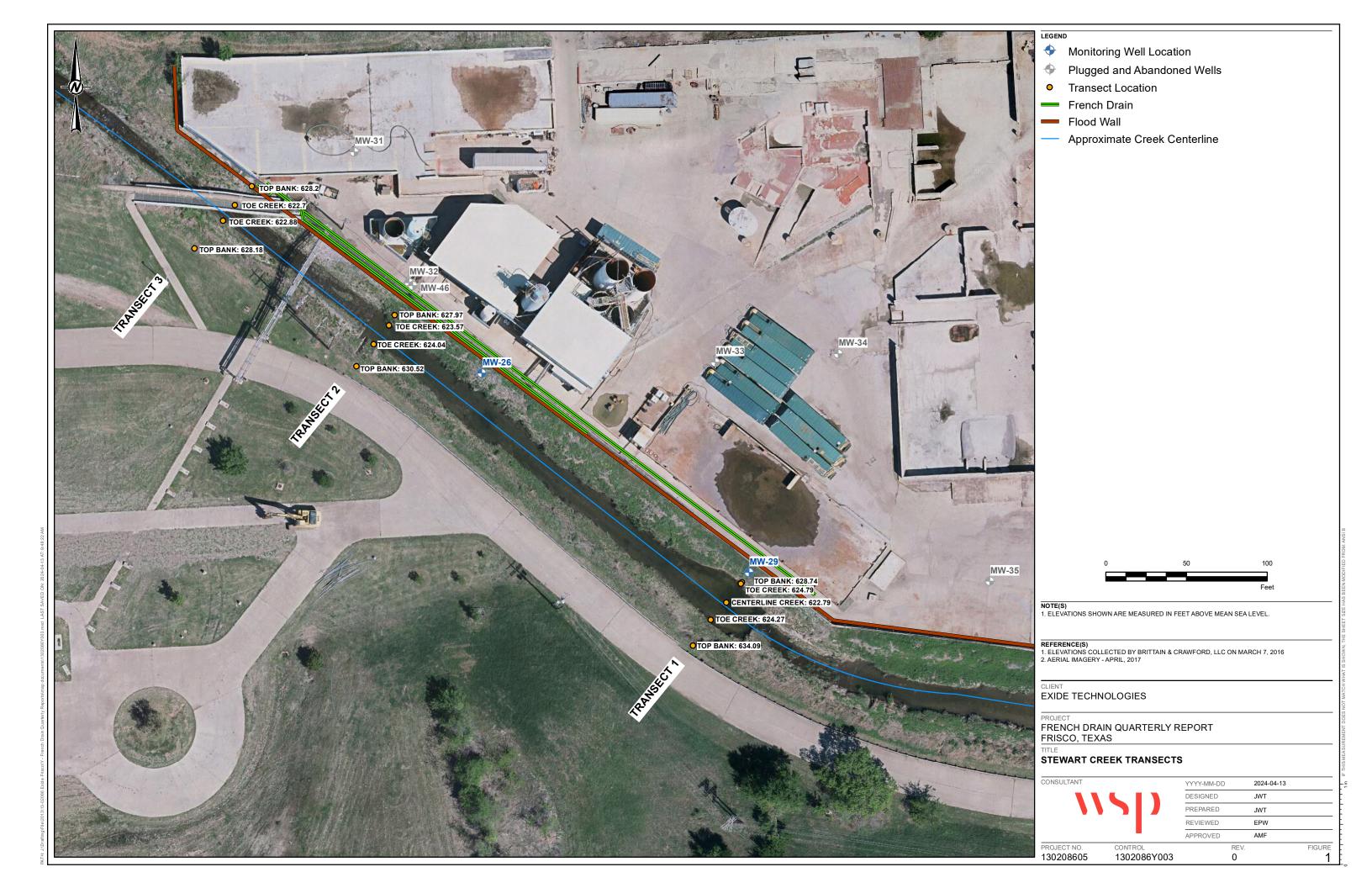
Prepared by: SD 4/4/2024 Checked by: CM 4/11/2024 Reviewed by: TJ 4/11/2024

French Drain Water Analytical Data

	FD0216	ole ID 524-001	FD0216	ample ID 021624-002		
		tory ID	Labora	_		
		273-001	240202			
		ollected 24 15:20	Date Collected 2/15/2024 15:20			
Metals						
Parameter:	Result	Units	Result	Units		
Arsenic	NA	mg/L	<0.003	mg/L		
Barium	NA	mg/L	0.036	mg/L		
Cadmium	NA	mg/L	<0.0005	mg/L		
Chromium	NA	mg/L	0.010	mg/L		
Copper	NA	mg/L	0.0041 J-5	mg/L		
Iron	NA	mg/L	<0.25	mg/L		
Lead	NA	mg/L	<0.003	mg/L		
Manganese	NA	mg/L	<0.001	mg/L		
Nickel	NA	mg/L	<0.003	mg/L		
Selenium	NA	mg/L	0.0109	mg/L		
Silver	NA	mg/L	<0.001	mg/L		
Zinc	NA	mg/L	0.041	mg/L		
Mercury	NA	mg/L	<0.0001	mg/L		
General Chemistry						
Parameter:	Result	Units	Result	Units		
Total Suspended Solids	2.0	mg/L	NA	mg/L		
Total Dissolved Solids	920	mg/L	NA	mg/L		

Notes:

1) NA - Not Analyzed


2) mg/L - milligrams per liter

3) **Bold** values indicate a detection.

- 4) < denotes analyte not detected, value shown is the sample detection limit (SDL)
- 5) J-5 the associated concentration is an estimated value between the SDL and the adjusted method quantitation limit (MQL).

Prepared by: SD 04/04/2024 Checked by: CM 4/11/2024

Reviewed by: TJ 4/11/2024

Order ID: 24020273 Date: 2/27/2024 Page 1 of 15

Tuesday, February 27, 2024

Frisco Community Development Corp/City of Fri Eduardo Salazar 6101 Frisco Square Blvd Frisco, Texas 75034

Tel: (972) 335-2121 Fax:

Re: Project Name: F.C.D.C/ Former Exide Technologies

Project Number: Influent water flows

Project Location: 7471 Fifth Street Frisco, Texas 75034

SPL Inc received 6 liquid sample(s). The analysis performed were as follows:

<u>Sample</u>	Sample ID	<u>Matrix</u>	<u>Collected</u>	<u>Analysis</u>
24020273-001	FD021624-001	Liquid	2/15/2024 15:20	Total Dissolved Solids, Total Suspended Solids
24020273-002	FD021624-002	Liquid	2/15/2024 15:20	Arsenic, Barium, Cadmium, Chromium, Copper, Iron, Lead, Manganese, Mercury, Nickel, Selenium, Silver, Zinc
24020273-003	SO021624-001	Liquid	2/15/2024 09:40	Total Dissolved Solids, Total Suspended Solids
24020273-004	SO021624-002	Liquid	2/15/2024 09:40	Arsenic, Barium, Cadmium, Chromium, Copper, Iron, Lead, Manganese, Mercury, Nickel, Selenium, Silver, Zinc
24020273-005	L021624-001	Liquid	2/15/2024 10:45	Total Dissolved Solids, Total Suspended Solids
24020273-006	L021624-002	Liquid	2/15/2024 10:45	Arsenic, Barium, Cadmium, Chromium, Copper, Iron, Lead, Manganese, Mercury, Nickel, Selenium, Silver, Zinc

To the best of my knowledge, all problems/ anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified via associated flags and/ or in the case narrative. The analyses and data met requirements of NELAP except where noted. All non-NELAP methods are identified accordingly and all estimated uncertainties of test results are within method or EPA specifications.

Respectfully submitted,

Chad Cooper Laboratory Manager

Order ID: 24020273 Date: 2/27/2024 Page 2 of 15

Frisco Community Development Corp/City of Fri Eduardo Salazar

Analytical Report

Customer Sample ID:	FD02	1624-001								
SPL Sample ID:	24020	273-001	<u>-</u>							
Sample Received:	2/16/2	2024	Sample Collected: 2/15/2024 15:20							
Parameter	SDL	MQL	Result	Units	Date Analyzed	Method	Analyst	Flags		
General Chemistry										
Total Dissolved Solids	50.0	50	92	0 mg/L	02/20/24 14:25	SM 2540-C	K.V.			
Total Suspended Solids	1.0	5	2.	0 mg/L	02/19/24 09:50	SM 2540-D	K.V.	J-5		

Order ID: 24020273 Date: 2/27/2024 Page 3 of 15

Frisco Community Development Corp/City of Fri Eduardo Salazar

Analytical Report

Project Name: F.C.D.C/ Former Exide Technologies

Customer Sample ID: FD021624-002

SPL Sample ID: 24020273-002 Matrix: Liquid

0. = 0ap.0 .2.						94.4		
Sample Received:	2/16/2	024		Sam	ple Collected: 2	/15/2024 1	5:20	
Parameter	SDL	MQL	Result	Units	Date Analyzed	Method	Analyst	Flags
Metals								
Digested by method 200.8 on 02/19/24 at	t 07:45							
Arsenic	0.003	0.005	ND	mg/L	02/19/24 17:10	200.8	M.F.	
Barium	0.003	0.005	0.036	mg/L	02/19/24 17:10	200.8	M.F.	
Cadmium	0.0005	0.001	ND	mg/L	02/19/24 17:10	200.8	M.F.	
Chromium	0.003	0.005	0.010	mg/L	02/19/24 17:10	200.8	M.F.	
Copper	0.0025	0.005	0.0041	mg/L	02/19/24 17:10	200.8	M.F.	J-5
Iron	0.25	0.5	ND	mg/L	02/19/24 17:10	200.8	M.F.	
Lead	0.003	0.005	ND	mg/L	02/19/24 17:10	200.8	M.F.	
Manganese	0.001	0.002	ND	mg/L	02/19/24 17:10	200.8	M.F.	
Nickel	0.003	0.005	ND	mg/L	02/19/24 17:10	200.8	M.F.	
Selenium	0.0025	0.005	0.0109	mg/L	02/19/24 17:10	200.8	M.F.	
Silver	0.001	0.001	ND	mg/L	02/19/24 17:10	200.8	M.F.	
Zinc	0.003	0.005	0.041	mg/L	02/19/24 17:10	200.8	M.F.	B-4
Digested by method 245.1 on 02/19/24 at	t 13:33			J				
Mercury	0.0001	0.0002	ND	mg/L	02/20/24 11:46	245.1	K.E.L.	

Order ID: 24020273 Date: 2/27/2024 Page 8 of 15

Frisco Community Development Corp/City of Fri Eduardo Salazar

Sample Cross Reference

Customer ID:	Lab ID:	Test	Method	QCBatchID:
FD021624-001	24020273-001	Total Dissolved Solids	SM 2540-C	TDS14030_L
		Total Suspended Solids	SM 2540-D	TSS00154_L
FD021624-002	24020273-002	Mercury	245.1	MERC_09153_L
		Arsenic	200.8	META_19785_L
		Selenium	200.8	META_19785_L
		Silver	200.8	META_19785_L
		Zinc	200.8	META_19785_L
		Manganese	200.8	META_19785_L
		Lead	200.8	META_19785_L
		Iron	200.8	META_19785_L
		Copper	200.8	META_19785_L
		Chromium	200.8	META_19785_L
		Nickel	200.8	META_19785_L
		Barium	200.8	META_19785_L
		Cadmium	200.8	META_19785_L
SO021624-001	24020273-003	Total Dissolved Solids	SM 2540-C	TDS14030_L
		Total Suspended Solids	SM 2540-D	TSS00154_L
SO021624-002	24020273-004	Mercury	245.1	MERC_09153_L
		Copper	200.8	META_19785_L
		Silver	200.8	META_19785_L
		Selenium	200.8	META_19785_L
		Nickel	200.8	META_19785_L
		Manganese	200.8	META_19785_L
		Iron	200.8	META_19785_L
		Chromium	200.8	META_19785_L
		Zinc	200.8	META_19785_L
		Cadmium	200.8	META_19785_L
		Barium	200.8	META_19785_L
		Arsenic	200.8	META_19785_L
		Lead	200.8	META_19785_L
L021624-001	24020273-005	Total Dissolved Solids	SM 2540-C	TDS14030_L
		Total Suspended Solids	SM 2540-D	TSS00154_L
_021624-002	24020273-006	Mercury	245.1	MERC_09153_L
-02.02.002	2.0202.0 000	Lead	200.8	META_19785_L
		Arsenic	200.8	META_19785_L
		Barium	200.8	META_19785_L
		Cadmium	200.8	META_19785_L
		Chromium	200.8	META_19785_L
		Iron	200.8	META_19785_L
		Manganese	200.8	META_19785_L
		Nickel	200.8	META_19785_L
		Selenium	200.8	META_19785_L
		Silver	200.8	META_19785_L
		Zinc	200.8	META_19785_L
		Copper	200.8	META_19785_L

Order ID: 24020273 Date: 2/27/2024 Page 9 of 15

Frisco Community Development Corp/City of Fri Eduardo Salazar

QC Summary

			Reference			Rec		RPD	
QC Type	Parameter	Result	Value	Spike Conc	Rec	Limits	RPD	Limits	Flag
QCBatch	ID TDS14030_L								
Blank	Total Dissolved Solids	ND mg/L							
LCS	Total Dissolved Solids	990 mg/L		1000 mg/L	99%	90-110%			
LCSD	Total Dissolved Solids	985 mg/L		1000 mg/L	99%	90-110%	0.5%	0-5%	
Replicate	Total Dissolved Solids	3430 mg/L	3440 mg/L				0.3%	0-5%	
QCBatch	ID TSS00154_L								
Blank	Total Suspended Solids	ND mg/L							
LCS	Total Suspended Solids	485 mg/L		500 mg/L	97%	85-115%			
LCSD	Total Suspended Solids	484 mg/L		500 mg/L	97%	85-115%	0.2%	0-15%	
Replicate	Total Suspended Solids	174 mg/L	181 mg/L	300 mg/L	37 70	03-11070	3.9%	0-15%	
·		T7 + Hig/L	TOT HIG/L				0.070	0 1070	
	ID MERC_09153_L								
Blank	Mercury	ND mg/L							
LCS	Mercury	0.0096 mg/L		0.01 mg/L	96%	85-115%			
LCSD	Mercury	0.0096 mg/L		0.01 mg/L	96%	85-115%	0.1%	0-25%	
MS	Mercury	0.0098 mg/L	ND	0.01 mg/L	98%	80-120%			
MSD	Mercury	0.0097 mg/L	ND	0.01 mg/L	97%	80-120%	1.2%	0-25%	
QCBatch	ID META_19785_L								
Blank	Arsenic	ND mg/L							
	Barium	ND mg/L							
	Cadmium	ND mg/L							
	Chromium	ND mg/L							
	Copper	ND mg/L							
	Iron	ND mg/L							
	Lead	ND mg/L							
	Manganese	ND mg/L							
	Nickel	ND mg/L							
	Selenium	ND mg/L							
	Silver	ND mg/L							
	Zinc	0.00904 mg/L							
LCS	Arsenic	0.098 mg/L		0.1 mg/L	98%	85-115%			
	Barium	0.091 mg/L		0.1 mg/L	91%	85-115%			
	Cadmium	0.0976 mg/L		0.1 mg/L	98%	85-115%			
	Chromium	0.103 mg/L		0.1 mg/L	103%	85-115%			
	Copper	0.0999 mg/L		0.1 mg/L	100%	85-115%			
	Iron	10.1 mg/L		10.1 mg/L	100%	85-115%			
	Lead	0.100 mg/L		0.1 mg/L	100%	85-115%			
	Manganese	0.100 mg/L		0.1 mg/L	100%	85-115%			
	Nickel	0.093 mg/L		0.1 mg/L	93%	85-115%			
	Selenium	0.0999 mg/L		0.1 mg/L	100%	85-115%			
	Silver	0.097 mg/L		0.1 mg/L	97%	85-115%			
	Zinc	0.100 mg/L		0.1 mg/L	100%	85-115%			
LCSD	Arsenic	0.098 mg/L		0.1 mg/L	98%	85-115%	0.5%	0-20%	

Order ID: 24020273 Date: 2/27/2024 Page 10 of 15

Frisco Community Development Corp/City of Fri Eduardo Salazar

QC Summary

			Reference			Rec		RPD	
QC Type	Parameter	Result	Value	Spike Conc	Rec	Limits	RPD	Limits	Flags
QCBatch	ID META_19785_L								
	Barium	0.098 mg/L		0.1 mg/L	98%	85-115%	7.4%	0-20%	
	Cadmium	0.0988 mg/L		0.1 mg/L	99%	85-115%	1.2%	0-20%	
	Chromium	0.102 mg/L		0.1 mg/L	102%	85-115%	1.0%	0-20%	
	Copper	0.0981 mg/L		0.1 mg/L	98%	85-115%	1.8%	0-20%	
	Iron	10.0 mg/L		10.1 mg/L	99%	85-115%	0.8%	0-20%	
	Lead	0.100 mg/L		0.1 mg/L	100%	85-115%	0.1%	0-20%	
	Manganese	0.098 mg/L		0.1 mg/L	98%	85-115%	1.9%	0-20%	
	Nickel	0.093 mg/L		0.1 mg/L	93%	85-115%	0.5%	0-20%	
	Selenium	0.0986 mg/L		0.1 mg/L	99%	85-115%	1.3%	0-20%	
	Silver	0.105 mg/L		0.1 mg/L	105%	85-115%	8.2%	0-20%	
	Zinc	0.099 mg/L		0.1 mg/L	99%	85-115%	0.6%	0-20%	
MS	Arsenic	0.494 mg/L	ND	0.5 mg/L	99%	80-120%			
	Barium	_	0.014 mg/L	0.5 mg/L	96%	80-120%			
	Cadmium	0.4968 mg/L	0.0283 mg/L	0.5 mg/L	94%	80-120%			
	Chromium	0.876 mg/L	0.342 mg/L	0.5 mg/L	107%	80-120%			
	Copper	-	0.0603 mg/L	0.5 mg/L	99%	80-120%			
	Iron	49.9 mg/L	_	50.5 mg/L	98%	80-120%			
	Lead	0.475 mg/L		0.5 mg/L	95%	80-120%			
	Manganese	0.488 mg/L		0.5 mg/L	98%	80-120%			
	Nickel	0.525 mg/L		0.5 mg/L	91%	80-120%			
	Selenium	0.4852 mg/L	ND	0.5 mg/L	97%	80-120%			
	Silver	0.507 mg/L	ND	0.5 mg/L	101%	80-120%			
	Zinc	•	0.054 mg/L	0.5 mg/L	90%	80-120%			
MSD	Arsenic	0.523 mg/L	ND	0.5 mg/L	105%	80-120%	5.7%	0-20%	
	Barium	0.533 mg/L	0.014 mg/L	0.5 mg/L	104%	80-120%	7.3%	0-20%	
	Cadmium	•	0.0283 mg/L	0.5 mg/L	99%	80-120%	5.5%	0-20%	
	Chromium	-	0.342 mg/L	0.5 mg/L	107%	80-120%	0.1%	0-20%	
	Copper	_	0.0603 mg/L	0.5 mg/L	104%	80-120%	4.9%	0-20%	
	Iron	52.0 mg/L	-	50.5 mg/L	102%	80-120%	4.2%	0-20%	
	Lead	0.509 mg/L		0.5 mg/L	102%	80-120%	7.0%	0-20%	
	Manganese	0.511 mg/L		0.5 mg/L	102%	80-120%	4.6%	0-20%	
	Nickel	0.546 mg/L		0.5 mg/L	95%	80-120%	4.0%	0-20%	
	Selenium	0.5089 mg/L	ND	0.5 mg/L	102%	80-120%	4.8%	0-20%	
	Silver	0.520 mg/L		0.5 mg/L	104%	80-120%	2.6%	0-20%	
	Zinc	0.526 ma/L	0.054 mg/L	0.5 mg/L	94%	80-120%	3.9%	0-20%	

Order ID: 24020273 Date: 2/27/2024 Page 11 of 15

Frisco Community Development Corp/City of Fri Eduardo Salazar

Case Narrative

Project Name: F.C.D.C/ Former Exide Technologies

B-4 Analyte detected in blank.

J-5 The associated concentration is an estimated value detected between the SDL and the Adjusted MQL

Dx [Value] Sample diluted by [Value] amount

ppm Parts per million = mg/Kg or mg/L

ppb Parts per billion = ug/Kg or ug/L

MQL Method quantitation limit

SDL Sample detection limit (reflects any laboratory adjustments made to the sample during analysis such as dry weight or dilutions)

SQL Sample quantitation limit (reflects any laboratory adjustments made to the sample during analysis such as dry weight or dilution

ND Analyte not detected at or above SDL

LCS/LCSD Laboratory control spike / Laboratory control spike duplicate

MS/MSD Matrix spike / Matrix spike duplicate

RPD Relative percent difference

Sub Analysis performed by subcontract laboratory

Solid samples submitted to the laboratory for analysis by SW-846 Method 8260 should be collected by SW-846 Method 5035. Those samples in which concentrations are less than or equal to 200 ug/kg should be collected in accordance with SW-846 Method 5035, Section 6.2.1. For samples with higher concentrations (> 200 ug/kg), collect samples by SW-846 Method 5035, Section 6.2.2 or 6.2.3. Sample results may not accurately reflect volatile concentrations if collection is not performed according to the referenced methodologies.

Solid samples submitted to the laboratory for analysis by TNRCC Method 1005 should be collected in accordance to the methodology. Those samples in which concentrations of C6 to C12 are known to be absent, or fall under the Petroleum Storage Tank (PST) rule, may be collected in bulk sample jars in accordance with TNRCC Method 1005, Revision 3 clarifications. For samples with concentrations of C6 to C12, or where knowledge of the site does not exist, collect samples by TNRCC Method 1005, Section 6.1. Sample results may not accurately reflect TPH concentrations if collection is not performed according to the referenced methodologies.

Solid sample results reported on a dry weight basis for all applicable analysis, unless otherwise noted. Dry weight calculations based upon % solids obtained as outlined in EPA method 5035 section 7.5.

This report is intended only for the use of Frisco Community Development Corp/City of Frisco and may contain information that is privileged and confidential. It may not be reproduced in full (or in part) without the expressed written permission of Frisco Community Development Corp/City of Frisco and Southern Petroleum Laboratories, Inc.

Southern Petroleum Laboratories, Inc. certifies to the best of its knowledge that all results contained in this report are consistent with the National Environmental Laboratory Accreditation Program, except where otherwise noted.

Order ID: 24020273 Date: 2/27/2024 Page 12 of 15

Frisco Community Development Corp/City of Fri Eduardo Salazar

Sample Preservation Verification

Project Name: F.C.D.C/ Former Exide Technologies

Receipt temp: 1.8 °C on Ice
Receipt method: Customer Courier

Custody seal intact: Yes All samples / labels received intact: Yes

Customer Sample ID: FD021624-001 Collected By: Eduardo Salazar SPL Sample ID: 24020273-001 Collector Affiliation: City of Frisco

Collected: 02/15/24 15:20 Matrix: Liquid

Indicated / Observed

Bottle TypeCountCollection MethodParts / IntervalPreservationpH1000 mL Plastic1GrabTemp-

Customer Sample ID: FD021624-002 Collected By: Eduardo Salazar SPL Sample ID: 24020273-002 Collector Affiliation: City of Frisco

Collected: 02/15/24 15:20 Matrix: Liquid

Indicated / Observed

Bottle TypeCountCollection MethodParts / IntervalPreservationpH250 mL Plastic1GrabHNO3<2</td>

Customer Sample ID: SO021624-001 Collected By: Eduardo Salazar SPL Sample ID: 24020273-003 Collector Affiliation: City of Frisco

Collected: 02/15/24 09:40 Matrix: Liquid

Matrix. Liquid

 Bottle Type
 Count
 Collection Method
 Parts / Interval
 Preservation
 pH

 1000 mL Plastic
 1
 Grab
 Temp

Customer Sample ID: SO021624-002 Collected By: Eduardo Salazar

SPL Sample ID: 24020273-004 Collector Affiliation: City of Frisco

Collected: 02/15/24 09:40 Matrix: Liquid

Indicated / Observed

Bottle TypeCountCollection MethodParts / IntervalPreservationpH250 mL Plastic1GrabHNO3<2</td>

Customer Sample ID: L021624-001 Collected By: Eduardo Salazar

SPL Sample ID: 24020273-005 Collector Affiliation: City of Frisco

Collected: 02/15/24 10:45 Matrix: Liquid

Indicated / Observed

Bottle Type Count Collection Method Parts / Interval Preservation pH

1000 mL Plastic 1 Grab Temp -

Order ID: 24020273 Date: 2/27/2024 Page 13 of 15

Frisco Community Development Corp/City of Fri Eduardo Salazar

Sample Preservation Verification

Project Name: F.C.D.C/ Former Exide Technologies

Customer Sample ID: L021624-002 Collected By: Eduardo Salazar

SPL Sample ID: 24020273-006 Collector Affiliation: City of Frisco

Collected: 02/15/24 10:45 Matrix: Liquid

Indicated / Observed

Bottle TypeCountCollection MethodParts / IntervalPreservationpH250 mL Plastic1GrabHNO3<2</td>

Sample conditions at time of receipt at laboratory verified in part or in whole by:

ΕT

Order ID: 24020273 Date: 2/27/2024 Page 14 of 15

Documentation

PROJECT DESCRIPTION: F.C.D.C/ Former Exide Technologies

	INDUSTRY: F.C.D.C	INDUSTRY: F.C.D.C / Former Exide Technologies	Sa	· OUTFALL:	OUTFALL: Influent water flows		SAMPLER: Edua	Eduardo Salazar		
	ADDRESS: 7471 Fifth Street	7471 Fifth Street Friency Tayas 75034		NATURE OF INDUSTRY: Former Secondary Smelting	INDUSTRY: lary Smelting		REPRESENTING: Cit	City of Frisco	, (
	INDUSTRY REPRESENTATIVE (S):	NTATIVE (S): , Eduardo Salazar	Salazar ,				SIGNATURE: SHU	ard	5 Dalazo	
24020213	SAMPLE No. / IDENTIFICATION	DATE (S)	TIME (S)	SAMPLE TYPE **	ANALYSES REQUESTED	Hd	DATE	INIT	PRESERVATION/ REMARKS/CONTAINERS / ALL SAMPLES COOL ≤ 6° C	INITIALS
	FD021624-001	02/15/24	3:20 PM	Grab	TDS-TSS	8.8	02/15/24 3:20 PM	W.	None/1 liter	ES
200	FD021624-002	02/15/24	3:20 PM	Grab	As,Cd,Cu,Mn, Ni,Ag,Fe,Ba,C r,Pb,Hg,Se,Zn	8.8	02/15/24 3:20 PM	\$	HNo3//250ml/plastic	ES
503	SO021624-001	02/15/24	9:40 AM	Grab	TDS-TSS	8.3	02/15/24 9:40 AM	Z.	None/1 liter	ES
700	SO021624-002	02/15/24	9:40 AM	Grab	As,Cd,Cu,Mn, Ni,Ag,Fe,Ba,C r,Pb,Hg,Se,Zn	8.3	02/15/24 9:40 AM		HNo3//250ml/plastic	ES
500	L021624-001	02/15/24	10:45 AM	Grab	TDS-TSS	12.1	02/15/24 10:45 AM	≈ý	None/1 liter	ES
900	L021624-002	02/15/24	10:45 AM	Grab	As,Cd,Cu,Mn, Ni,Ag,Fe,Ba,C r,Pb,Hg,Se,Zn	12.1	02/15/24 10:45 AM	W.	HNo3//250ml/plastic	ES
	FIELD INFORMATION:	TON: Raw Grab Samples Quarterly	Quarterly	E-MAIL RESU	LTS TO Billy.king.m	nete (a/gmail.	E.MAIL RESULTS TO Billy, king mete @gmail.com E.Salazar@friscofexas.gov. ALindstrom@braunintertec.com	gov ALind	strom@braunintertec.com	
				USE WASTE W	USE WASTE WATER REPORT FORMAT	RMAT				
	RELINQUISHED BY: (S)	BY: (Signature)	REPRESENTING City Of Frisco	DATE 62-1K-24	TIME ()	RECEI	RECEIVED BY: (Signature)		REPRESENTING DATE JC/24 /	TIME (0:1/5/47)
	RELINQUISTED BY: (Si	BY; (Signature)	REPRESENTING JCS6	2	TIME 2:40pm	RECEIVED (IVED BY: (Signature)		124 /	TIME 440
/ _			,	,				+		<

Order ID: 24020273 Date: 2/27/2024 Page 15 of 15

Documentation

PROJECT DESCRIPTION: F.C.D.C/ Former Exide Technologies

Supplemental Sample Receipt Checklist

Project: In fluent water flows	Date Received: 2/16/2
Project: In fluent water flow's	Received By: Richar
Project ID: 24020273	
Thermometer ID: PLA-40	Correction Factor: 0.3 °C
Observed cooler Temperature: \(\)	Corrected cooler Temperature: 1.8 °C
Samples Received on Ice:	Ŷ N
Proper bottles received in good condition: (Ŷ N
	$\widetilde{\widehat{\mathbf{Y}}}$ N
	Ŷ N
	Ý N
Samples received within hold time:	Ŷ N
VOA vials filled properly:	Y N NA
Custody Seal Present:	\widehat{Y} N
Custody Seal Intact:	Y N NA
Note:	
*Samples needing thermal preservation that are samp acceptable even if the measured temperature is higher	
Comments:	