

July 01, 2013

Rusty Simpson Southwest Geoscience 2351 W. Northwest Hwy Suite 3321 Dallas, TX 75220

RE: Pace Project 756280

Project ID: 0111C278A/SC Sediment Sampling

Dear Rusty Simpson:

Enclosed are the analytical results for sample(s) received by the laboratory on June 20, 2013. Results reported herin conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Shelly Connelly

shelly.connelly@pacelabs.com

Shelly Cornelly)

Laboratory Certifications

Pace Dallas: Texas Certification #: T104704232-12-4

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Sample Cross Reference

Pace Analytical Services, Inc. 400 W. Bethany Drive, Suite 190 Allen, TX 75013 (972) 727-1123

Pace Project No.: 756280

Client: Southwest Geoscience

Project ID: 0111C278A/SC Sediment Sampling

Client Sample ID	Lab ID	Matrix	Collection Date/Time	Received Date/Time
SC-SED-41-1R/2R/3R	756280001	Solid	06/19/2013 11:58	06/20/2013 13:26
SC-SED-42-1R/2R/3R	756280002	Solid	06/19/2013 12:22	06/20/2013 13:26
SC-SED-43-1R/2R/3R	756280003	Solid	06/19/2013 12:48	06/20/2013 13:26
SC-SED-44-1/2/3	756280004	Solid	06/19/2013 14:18	06/20/2013 13:26
SC-SED-45-1/2/3	756280005	Solid	06/19/2013 14:50	06/20/2013 13:26
SC-SED-46-1/2/3	756280006	Solid	06/19/2013 15:08	06/20/2013 13:26
SC-SED-47-1/2/3	756280007	Solid	06/19/2013 15:48	06/20/2013 13:26
SC-SED-48-1/2/3	756280008	Solid	06/19/2013 16:11	06/20/2013 13:26

Project Narrative

Pace Analytical Services, Inc. 400 W. Bethany Drive, Suite 190 Allen, TX 75013 (972) 727-1123

Pace Project No.: 756280

Holding Times:

All holding times were met.

Blanks:

All blank results were below reporting limits.

Laboratory Control Samples:

All LCS recoveries were within QC limits.

Matrix Spikes and Duplicates:

MS or MSD recoveries outside of QC limits are qualified in the Report of Quality Control section.

Surrogate:

All surrogate recoveries were within QC limits.

Appendix A LABORATORY DATA PACKAGE COVER PAGE

This data package is for Job No. 756280 and consists of:

This signature page, the laboratory review checklist, and the following reportable data: X R1 - Field chain-of-custody documentation; X R2 - Sample identification cross-reference; X R3 - Test reports (analytical data sheets) for each environmental sample that includes: a. Items consistent with NELAC Chapter 5, b. Dilution factors, c. Preparation methods, d. Cleanup methods, and e. If required for the project, tentatively identified compounds (TICs). X R4 - Surrogate recovery data including: a. Calculated recovery (%R), and b. The laboratory's surrogate QC limits. X R5 - Test reports/summary forms for blank samples; X R6 - Test reports/summary forms for laboratory control samples (LCSs) including: a. LCS spiking amounts, b. Calculated %R for each analyte, and c. The laboratory's LCS QC limits. X R7 - Test reports/summary forms for matrix spike/matrix spike duplicates (MS/MSDs) including: a. Samples associated with the MS/MSD clearly identified, b. MS/MSD spiking amounts, c. Concentration of each MS/MSD analyte measured in the parent and spiked samples, d. Calculated %Rs and relative percent differences, and e. The laboratory's MS/MSD QC limits. X R8 - Laboratory analytical duplicate (if applicable) recovery and precision: a. The amount of analyte measured in the duplicate, b. The calculated RPD, and, c. The laboratory's QC limits for analytical duplicated. R9 - List of method quantitation limits (MQLs) and detectability check sample results for each analyte and X R10 - Other problems or anomalies.

The exception Report for each "No" or "Not Reviewed (NR)" item in the Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accredidation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Check, if applicable: [] This laboratory meets an exception under 30 TAC §25.6 and was last inspected by [X] TCEQ on 02/24/2012

Any findings affecting the data in this laboratory data package are noted in the Exception Reports herin. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name (Printed) Signature Official Title (Printed) <u>Date</u> Shelly Connelly Shelly Cornelly) **Project Manager** 07/01/2013

Pace Analytical Services, Inc. 400 W. Bethany Drive, Suite 190 Allen, TX 75013 (972) 727-1123

Client: Southwest Geoscience

 Client ID:
 SC-SED-41-1R/2R/3R

 Project ID:
 0111C278A/SC Sediment

 Lab ID: 756280001
 Moisture: 29.3%
 Pace Project No.: 756280

 Collected: 06/19/2013 11:58
 Received: 06/20/2013 13:26
 Matrix: Solid

Parameters	DF	Results	Qual	Units	MQL	SDL	Analysis Date	Prep Date	Batch	Instr.
6010 Metals, Total	Anal	ytical Method:	: EPA 60°	10	Prepa	aration Met	hod: EPA 3050			
Arsenic	1	24.9	n	ng/kg	0.37	0.15	06/25/2013 20:22	06/24/2013 05:00	7029	75ICP1
Cadmium	1	0.35	n	ng/kg	0.15	0.029	06/25/2013 20:22	06/24/2013 05:00	7029	75ICP1
Lead	1	13.1	n	ng/kg	0.29	0.074	06/25/2013 20:22	06/24/2013 05:00	7029	75ICP1
Extractable Organic Carbon	Anal	ytical Method:	EPA 906	60M	Prepa	aration Met	hod: EPA 9060M			
Total Organic Carbon	1 -	40.5	n	ng/kg	7.1	3.5	06/28/2013 11:53	06/25/2013 14:38	7100	75WTA1

Pace Analytical Services, Inc. 400 W. Bethany Drive, Suite 190 Allen, TX 75013 (972) 727-1123

Client: Southwest Geoscience

Client ID: SC-SED-42-1R/2R/3R Project ID: 0111C278A/SC Sediment

 Lab ID: 756280002
 Moisture: 19.5%
 Pace Project No.: 756280

 Collected: 06/19/2013 12:22
 Received: 06/20/2013 13:26
 Matrix: Solid

Parameters	DF	Results	Qual	Units	MQL	SDL	Analysis Date	Prep Date	Batch	Instr.
6010 Metals, Total	Analy	ytical Method:	: EPA 60°	10	Prepa	aration Met	hod: EPA 3050			
Arsenic	1	10.8	n	ng/kg	0.31	0.12	06/25/2013 20:47	06/24/2013 05:00	7029	75ICP1
Cadmium	1 (0.35	n	ng/kg	0.12	0.025	06/25/2013 20:47	06/24/2013 05:00	7029	75ICP1
Lead	1	8.6	n	ng/kg	0.25	0.061	06/25/2013 20:47	06/24/2013 05:00	7029	75ICP1
Extractable Organic Carbon	Analy	ytical Method:	EPA 906	60M	Prepa	aration Met	hod: EPA 9060M			
Total Organic Carbon	1 :	32.6	n	ng/kg	6.1	3.1	06/28/2013 13:42	06/25/2013 14:38	7100	75WTA1

Pace Analytical Services, Inc. 400 W. Bethany Drive, Suite 190 Allen, TX 75013 (972) 727-1123

Client: Southwest Geoscience

Client ID: SC-SED-43-1R/2R/3R Project ID: 0111C278A/SC Sediment

 Lab ID: 756280003
 Moisture: 29.4%
 Pace Project No.: 756280

 Collected: 06/19/2013 12:48
 Received: 06/20/2013 13:26
 Matrix: Solid

Parameters	DF	Results	Qual	Units	MQL	SDL	Analysis Date	Prep Date	Batch	Instr.
6010 Metals, Total	Anal	ytical Method:	EPA 601	10	Prepa	aration Met	hod: EPA 3050			
Arsenic	1	20.1	n	ng/kg	0.37	0.15	06/25/2013 20:54	06/24/2013 05:00	7029	75ICP1
Cadmium	1	1.5	n	ng/kg	0.15	0.030	06/25/2013 20:54	06/24/2013 05:00	7029	75ICP1
Lead	1	14.3	n	ng/kg	0.30	0.074	06/25/2013 20:54	06/24/2013 05:00	7029	75ICP1
Extractable Organic Carbon	Anal	ytical Method:	EPA 906	60M	Prepa	aration Met	hod: EPA 9060M			
Total Organic Carbon	1	17.5	n	na/ka	6.9	3.5	06/28/2013 14:16	06/25/2013 14:38	7100	75WTA1

Pace Analytical Services, Inc. 400 W. Bethany Drive, Suite 190 Allen, TX 75013 (972) 727-1123

Client: Southwest Geoscience

Client ID: SC-SED-44-1/2/3 Project ID: 0111C278A/SC Sediment

 Lab ID: 756280004
 Moisture: 22.5%
 Pace Project No.: 756280

 Collected: 06/19/2013 14:18
 Received: 06/20/2013 13:26
 Matrix: Solid

Parameters	DF	Results	Qual	Units	MQL	SDL	Analysis Date	Prep Date	Batch	Instr.
6010 Metals, Total	Anal	ytical Method:	EPA 601	10	Prepa	aration Met	hod: EPA 3050			
Arsenic	1	12.8	n	ng/kg	0.34	0.13	06/25/2013 21:01	06/24/2013 05:00	7029	75ICP1
Cadmium	1	0.39	n	ng/kg	0.13	0.027	06/25/2013 21:01	06/24/2013 05:00	7029	75ICP1
Lead	1	12.1	n	ng/kg	0.27	0.067	06/25/2013 21:01	06/24/2013 05:00	7029	75ICP1
Extractable Organic Carbon	Anal	ytical Method:	EPA 906	EPA 9060M		aration Met	hod: EPA 9060M			
Total Organic Carbon	1	11.9	n	ng/kg	6.2	3.1	06/28/2013 14:48	06/25/2013 14:38	7100	75WTA1

Pace Analytical Services, Inc. 400 W. Bethany Drive, Suite 190 Allen, TX 75013 (972) 727-1123

Client: Southwest Geoscience

Client ID: SC-SED-45-1/2/3 Project ID: 0111C278A/SC Sediment

 Lab ID: 756280005
 Moisture: 19.7%
 Pace Project No.: 756280

 Collected: 06/19/2013 14:50
 Received: 06/20/2013 13:26
 Matrix: Solid

Parameters	DF	Results	Qual	Units	MQL	SDL	Analysis Date	Prep Date	Batch	Instr.
6010 Metals, Total	Analy	ytical Method:	EPA 60	10	Prepa	aration Met	hod: EPA 3050			
Arsenic	1	14.0	n	ng/kg	0.31	0.12	06/25/2013 21:08	06/24/2013 05:00	7029	75ICP1
Cadmium	1	1.7	n	ng/kg	0.12	0.024	06/25/2013 21:08	06/24/2013 05:00	7029	75ICP1
Lead	1	11.4	n	ng/kg	0.24	0.061	06/25/2013 21:08	06/24/2013 05:00	7029	75ICP1
Extractable Organic Carbon	Analy	ytical Method:	EPA 906	60M	Prepa	aration Met	hod: EPA 9060M			
Total Organic Carbon	1	12.8	n	ng/kg	6.4	3.2	06/28/2013 15:19	06/25/2013 14:38	7100	75WTA1

Pace Analytical Services, Inc. 400 W. Bethany Drive, Suite 190 Allen, TX 75013 (972) 727-1123

Client: Southwest Geoscience

Client ID: SC-SED-46-1/2/3 Project ID: 0111C278A/SC Sediment

 Lab ID: 756280006
 Moisture: 16%
 Pace Project No.: 756280

 Collected: 06/19/2013 15:08
 Received: 06/20/2013 13:26
 Matrix: Solid

Parameters	DF	Results	Qual	Units	MQL	SDL	Analysis Date	Prep Date	Batch	Instr.
6010 Metals, Total	Anal	ytical Method:	EPA 601	0	Prepa	aration Met	hod: EPA 3050			
Arsenic	1	26.1	n	ng/kg	0.30	0.12	06/25/2013 21:15	06/24/2013 05:00	7029	75ICP1
Cadmium	1	1.1	n	ng/kg	0.12	0.024	06/25/2013 21:15	06/24/2013 05:00	7029	75ICP1
Lead	1	11.8	n	ng/kg	0.24	0.060	06/25/2013 21:15	06/24/2013 05:00	7029	75ICP1
Extractable Organic Carbon	Anal	ytical Method:	EPA 906	SOM	Prepa	aration Met	hod: EPA 9060M			
Total Organic Carbon	1	19.6	n	ng/kg	6.1	3.0	06/28/2013 15:53	06/25/2013 14:38	7100	75WTA1

Pace Analytical Services, Inc. 400 W. Bethany Drive, Suite 190 Allen, TX 75013 (972) 727-1123

Client: Southwest Geoscience

Client ID: SC-SED-47-1/2/3 Project ID: 0111C278A/SC Sediment

 Lab ID: 756280007
 Moisture: 29.1%
 Pace Project No.: 756280

 Collected: 06/19/2013 15:48
 Received: 06/20/2013 13:26
 Matrix: Solid

Parameters	DF	Results	Qual	Units	MQL	SDL	Analysis Date	Prep Date	Batch	Instr.
6010 Metals, Total	Anal	ytical Method:	EPA 601	10	Prepa	aration Met	hod: EPA 3050			
Arsenic	1	16.9	n	ng/kg	0.35	0.14	06/25/2013 21:22	06/24/2013 05:00	7029	75ICP1
Cadmium	1	1.2	n	ng/kg	0.14	0.028	06/25/2013 21:22	06/24/2013 05:00	7029	75ICP1
Lead	1	19.6	n	ng/kg	0.28	0.070	06/25/2013 21:22	06/24/2013 05:00	7029	75ICP1
Extractable Organic Carbon	Anal	ytical Method:	EPA 906	EPA 9060M		aration Met	hod: EPA 9060M			
Total Organic Carbon	1	17.6	n	ng/kg	7.0	3.5	06/28/2013 17:03	06/25/2013 14:38	7100	75WTA1

Pace Analytical Services, Inc. 400 W. Bethany Drive, Suite 190 Allen, TX 75013 (972) 727-1123

Client: Southwest Geoscience

Client ID: SC-SED-48-1/2/3 Project ID: 0111C278A/SC Sediment

 Lab ID: 756280008
 Moisture: 21.7%
 Pace Project No.: 756280

 Collected: 06/19/2013 16:11
 Received: 06/20/2013 13:26
 Matrix: Solid

Parameters	DF	Results	Qual	Units	MQL	SDL	Analysis Date	Prep Date	Batch	Instr.
6010 Metals, Total	Anal	ytical Method:	EPA 60°	10	Prepa	aration Met	hod: EPA 3050			_
Arsenic	1	24.8	n	ng/kg	0.32	0.13	06/25/2013 21:28	06/24/2013 05:00	7029	75ICP1
Cadmium	1	2.4	n	ng/kg	0.13	0.026	06/25/2013 21:28	06/24/2013 05:00	7029	75ICP1
Lead	1	13.8	n	ng/kg	0.26	0.064	06/25/2013 21:28	06/24/2013 05:00	7029	75ICP1
Extractable Organic Carbon	Anal	ytical Method:	EPA 906	EPA 9060M		aration Met	hod: EPA 9060M			
Total Organic Carbon	1	15.6	n	ng/kg	6.7	3.4	06/28/2013 17:36	06/25/2013 14:38	7100	75WTA1

Quality Control

Pace Analytical Services, Inc. 400 W. Bethany Drive, Suite 190 Allen, TX 75013 (972) 727-1123

Batch: 7029
Method: EPA 6010
Prep Method: EPA 3050

Pace Project No.: <u>756280</u> Instrument ID: <u>75ICP1</u>

Blank: 28378

Parameters	Dilution	Quals	Result	Units	MQL	SDL	Analysis Date	Prep Date
Arsenic	1	U	<0.10	mg/kg	0.25	0.10	06/25/2013 17:44	06/24/2013 05:00
Cadmium	1	U	< 0.020	mg/kg	0.10	0.020	06/25/2013 17:44	06/24/2013 05:00
Lead	1	U	< 0.050	mg/kg	0.20	0.050	06/25/2013 17:44	06/24/2013 05:00

Laboratory Control Sample: 28379

	Spk	LCS		LCS	% Rec	LCS
Parameters	Amt	Result	Units	%Rec	Limits	Quals
Arsenic	50	49.0	mg/kg	98	80-120	
Cadmium	50	49.2	mg/kg	98	80-120	
Lead	50	52.6	mg/kg	105	80-120	

Matrix Spike: 28488 Matrix Spike Duplicate: 28489

Original for Sample: Batch sample 756247002

	Original	MS	MSD	MS	MSD		MS	MSD	% Rec		Max	
Parameters	Result	Spk	Spk	Result	Result	Units	%Rec	%Rec	Limits	RPD	RPD	Quals
Arsenic	3.4	51.8	51.8	40.7	37.1	mg/kg	72	65	75-125	9	20	M1
Cadmium	< 0.021	51.8	51.8	38.0	33.8	mg/kg	73	65	75-125	12	20	M1
Lead	8.2	51.8	51.8	43.2	40.0	mg/kg	68	61	75-125	8	20	M1

Matrix Spike: 28490 Matrix Spike Duplicate: 28491

Original for Sample: Batch sample 756247004

Parameters	Original Result	MS Spk	MSD Spk	MS Result	MSD Result	Units	MS %Rec	MSD %Rec	% Rec Limits	RPD	Max RPD	Quals
Arsenic	2.2	52	53	40.5	40.9	mg/kg	74	73	75-125	1	20	M1
Cadmium	< 0.021	52	53	38.3	38.6	mg/kg	74	73	75-125	1	20	M1
Lead	4.0	52	53	40.4	39.9	mg/kg	70	68	75-125	1	20	M1

Quality Control

Pace Analytical Services, Inc. 400 W. Bethany Drive, Suite 190 Allen, TX 75013 (972) 727-1123

Batch: <u>7100</u>

Method: EPA 9060M

Prep Method: EPA 9060M

Pace Project No.: 756280

Instrument ID: 75WTA1

Blank: 28636

Parameters Dilution Quals Result Units MQL SDL **Analysis Date Prep Date** Total Organic Carbon U <2.5 mg/kg 5.0 2.5 06/28/2013 11:14 06/25/2013 14:38

Laboratory Control Sample: 28637

Spk **LCS LCS** % Rec **LCS Parameters** Amt Result Units %Rec Limits Quals **Total Organic Carbon** 100 104 104 80-120 mg/kg

Matrix Spike: 28638 Matrix Spike Duplicate: 28639

Original for Sample: Project sample SC-SED-41-1R/2R/3R

Daramatara	Original	MS	MSD	MS	MSD	lleite	MS % Boo	MSD % Boo	% Rec	DDD	Max	Ouele	
Parameters	Result	Spk	Spk	Result	Result	Units	%Rec	%Rec	Limits	RPD	RPD	Quals	_
Total Organic Carbon	40.5	141	141	186	201	mg/kg	103	114	80-120	8	20		_

Unadjusted MQL Summary

Pace Analytical Services, Inc. 400 W. Bethany Drive, Suite 190 Allen, TX 75013 (972) 727-1123

Pace Project No.: 756280

Analyte	Method	Unadjusted MQL	Reporting Units
Arsenic	EPA 6010	0.25	mg/kg
Cadmium	EPA 6010	0.10	mg/kg
Lead	EPA 6010	0.20	mg/kg
Total Organic Carbon	EPA 9060M	5.0	mg/kg

Definitions/Qualifiers

Pace Analytical Services, Inc. 400 W. Bethany Drive, Suite 190 Allen, TX 75013 (972) 727-1123

Pace Project No.: 756280

DEFINITIONS

DF Dilution Factor

J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

U Indicates the compound was analyzed for, but not detected.

SDL Sample Detection Limit

MQL Method Quantitation Limit

LCS(D) Laboratory Control Sample (Duplicate)

MS(D) Matrix Spike (Duplicate)

DUP Sample Duplicate

RPD Relative Percent Difference

TNI The Nelac Institute

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

ANALYTE QUALIFIERS

Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

		TRRP LABORATORY R		1					
La	boratory	Pace Analytical Services, Inc.	LRC Date:	07/01/2	013				
Proje	ct Name:	0111C278A/SC Sediment Sampling	Laboratory Job Number:	756280					
Review	er Name:	Shelly Connelly	Prep Batch Number(s):	See exc	eption i	eport.			
# ¹	A ²	Description			Yes	No	NA ³	NR ⁴	ER#
R1	OI	Chain-of-custody (C-O-C)							
		Did samples meet the laboratory's standard conditions of sa	ample acceptability upon receip	t?	Х				
		Were all departures from standard conditions described in a	an exception report?		X				+
R2	OI	Sample and quality control (QC) identification	an exception report:		^				
112	0.	Are all field sample ID numbers cross-referenced to the lab	poratory ID numbers?		Х				
		Are all laboratory ID numbers cross-referenced to the corre			X				+
R3	OI	Test reports	coponding QO data:						
110	0.	Were all samples prepared and analyzed within holding tim	nes?		Х				
		Other than those results < MQL, were all other raw values to		rds?					+
					Х				
		Were calculations checked by a peer or supervisor?			Χ				
		Were all analyte identifications checked by a peer or super	visor?		Χ				
		Were sample detection limits reported for all analytes not de	letected?		Χ				
		Were all results for soil and sediment samples reported on			Χ				
		Were % moisture (or solids) reported for all soil and sedime			Χ				
		Were bulk soils/solids samples for volatile analysis extracte	ed with methanol per SW846 Me	ethod			X		
		5035? If required for the project, are TICs reported?					Х		+
R4	0	Surrogate recovery data		_			_ ^		
114		Were surrogates added prior to extraction?		_			Х		
		Were surrogate percent recoveries in all samples within the	a Jahoratory OC limits?				X		+
R5	OI	Test reports/summary forms for blank samples	e laboratory QC limits:						
KO	OI .			_	Х				
		Were appropriate type(s) of blanks analyzed?			X				\vdash
		Were blanks analyzed at the appropriate frequency? Were method blanks taken through the entire analytical pro	ocess including preparation and	1 if					\vdash
		applicable, cleanup procedures?	pooce, moraling proparation and	2,	Χ				
		Were blank concentrations < MQL?			Χ				
R6	OI	Laboratory control samples (LCS):							
		Were all COCs included in the LCS?			Χ				
		Was each LCS taken through the entire analytical procedur	re, including prep and cleanup s	steps?	Х				
		Were LCSs analyzed at the required frequency?			Х				
		Were LCS (and LCSD, if applicable) %Rs within the laborate	tory QC limits?		Х				1
		Does the detectability check sample data document the lab		e COCs	Х				1
		at the MDL used to calculate the SDLs?			^				
		Was the LCSD RPD within QC limits?					Х		
R7	OI	Matrix spike (MS) and matrix spike duplicate (MSD) data							
		Were the project/method specified analytes included in the	MS and MSD?		Х				
		Were MS/MSD analyzed at the appropriate frequency?			Χ				
		Were MS (and MSD, if applicable) %Rs within the laborator	ry QC limits?			Х			R7.:
		Were MS/MSD RPDs within laboratory QC limits?			Х				
R8	OI	Analytical duplicate data							
		Were appropriate analytical duplicates analyzed for each m					Х		
		Were analytical duplicates analyzed at the appropriate frequency	· ,				Х		
_		Were RPDs or relative standard deviations within the labora	atory QC limits?	_			Х		
R9	OI	Method quantitation limits (MQLs):							
		Are the MQLs for each method analyte included in the labo			Χ				
		Do the MQLs correspond to the concentration of the lowest	t non-zero calibration standard?	'	Χ				
		Are unadjusted MQLs and DCSs included in the laboratory	data package?		Х				<u> </u>
R10	OI	Other problems/anomalies							
-		Are all known problems/anomalies/special conditions noted	d in this LRC and ER?		Х				
		Was applicable and available technology used to lower the			Х				<u> </u>
		interference effects on the sample results?	rotom, Approditation Description	, the	^				<u> </u>
		Is the laboratory NELAC-accredited under the Texas Labor analytes, matrices, and methods associated with this labora		tne	Χ				

<sup>O = Organic analyses; I = inorganic analysises (and general chemistry, when applicable);

NA = Not applicable;

NR = Not reviewed;

ER# = Exception Report identification number (an Exception Report should be completed t</sup> ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

		TRRP LABORATORY RE	EVIEW CHECKLIST					
La	boratory	Pace Analytical Services, Inc.	LRC Date: 07/	01/2013				
	ct Name:	-	Laboratory Job Number: 756	280				
	er Name:	Shelly Connelly	-	exception	report.			
# ¹	A ²	Description		Yes	No	NA ³	NR ⁴	ER #5
S1	OI	Initial calibration (ICAL)						
•		Were response factors and/or relative response factors for e	each analyte within QC limits?	Х				
		Were percent RSDs or correlation coefficient criteria met?		Х				
		Was the number of standards recommended in the method	used for all analytes?	Х				
		Were all points generated between the lowest and highest s	tandard used to calculate the curve	? X				
		Ann IOAL data and Table for all tratements on a 10						-
		Are ICAL data available for all instruments used? Has the initial calibration curve been verified using an appro	nriate second source standard?	X				-
		rias the initial calibration curve been verified using an appro	priate second source standard?	X				
S2	OI	Initial and continuing calibration verification (ICCV and oblank (CCB):	CCV) and continuing calibration					
		Was the CCV analyzed at the method-required frequency?		X				
		Were precent differences for each analyte within the method	d-required QC limits?	X				
		Was the ICAL curve verified for each analyte?		X				
		Was the absolute value of the analyte concentration in the ir	norganic CCB < MDL?	X				
S3	0	Mass spectral tuning						
		Was the appropriate compound for the method used for tuni	ng?			Х		
		Were ion abundance data within the method-required QC lin	nits?			Х		
S4	0	Internal standards (IS)						
		Were IS area counts and retention times within the method-	required QC limits?			Х		
S 5	OI	Raw data (NELAC Section 5.5.10)						
		Were the raw data (for example, chromatograms, spectral data	ata) reviewed by an analyst?	Х				
		Were data associated with manual integrations flagged on the	ne raw data?	Х				
S6	0	Dual column confirmation						
		Did dual column confirmation results meet the method-requi	red QC?			Х		
S7	0	Tentatively identified compounds (TICs)						
		If TICs were requested, were the mass spectra and TIC data	a subject to appropriate checks?			Х		
S8	I	Interference Check Sample (ICS) results						
		Were percent recoveries within method QC limits?		Х				
S9	ı	Serial dilutions, post digestion spikes, and method of st						
		Were percent differences, recoveries, and the linearity withir method?	n the QC limits specified in the	X				
S10	OI	Method detection limit (MDL) studies						
		Was a MDL study performed for each reported analyte?		Х				
		Is the MDL either adjusted or supported by the analysis of D	CSs?	Х				
S11	OI	Proficiency test reports						
		Was the laboratory's performance acceptable on the applica	able proficiency tests or evaluation	Х				
S12	OI	studies? Standards documentation						
312	<u> </u>	Are all standards used in the analyses NIST-traceable or ob	tained from other appropriate	.,				
		sources?		Х				
S13	OI	Compound/analyte identification procedures						
		Are the procedures for compound/analyte identification docu	umented?	X				
S14	OI	Demonstration of analyst competency (DOC)						
		Was DOC conducted consistent with NELAC Chapter 5?		Х				
		ls documentation of the analyst's competency up-to-date an		X				
S15	OI	Verification/validation documentation for methods (NEL						
		Are all the methods used to generate the data documented, applicable?	verified, and validated, where	Х				
S16	OI	Laboratory standard operating procedures (SOPs)						
		Are laboratory SOPs current and on file for each method per	rformed?	Х				

Items identified by the letter "R" must be included in the laboratory in the laboratory data package submitted in the TRRP-required reports(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period;

O = Organic analyses; I = inorganic analysises (and general chemistry, when applicable);

NA = Not applicable;
NR = Not reviewed;
ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

	TRRP LABORATORY	REVIEW CHECKLIST	
La	aboratory Pace Analytical Services, Inc.	LRC Date:	07/01/2013
Proje	ect Name: 0111C278A/SC Sediment Sampling	Laboratory Job Number:	756280
Review	rer Name: Shelly Connelly	Prep Batch Number(s):	7012,7029,7100
ER #1		Description	
R7.3	MS Sample #28488: Arsenic 72% spike recovery outside laboratory	QC limit of 75-125%.	
R7.3	MS Sample #28488: Cadmium 73% spike recovery outside laborato	ry QC limit of 75-125%.	
R7.3	MS Sample #28488: Lead 68% spike recovery outside laboratory Q	C limit of 75-125%.	
R7.3	MS Sample #28490: Arsenic 74% spike recovery outside laboratory	QC limit of 75-125%.	
R7.3	MS Sample #28490: Cadmium 74% spike recovery outside laborato	ry QC limit of 75-125%.	
R7.3	MS Sample #28490: Lead 70% spike recovery outside laboratory Q	C limit of 75-125%.	
R7.3	MSD Sample #28489: Arsenic 65% spike recovery outside laborator	ry QC limit of 75-125%.	
R7.3	MSD Sample #28489: Cadmium 65% spike recovery outside labora	tory QC limit of 75-125%.	
R7.3	MSD Sample #28489: Lead 61% spike recovery outside laboratory	QC limit of 75-125%.	
R7.3	MSD Sample #28491: Arsenic 73% spike recovery outside laborator	ry QC limit of 75-125%.	
R7.3	MSD Sample #28491: Cadmium 73% spike recovery outside labora	tory QC limit of 75-125%.	
R7.3	MSD Sample #28491: Lead 68% spike recovery outside laboratory	QC limit of 75-125%.	
1.	ER# = Exception Report identification number (an Exception Report	t should be completed for an item	if "NR" or "No" is checked).

3 8 88 003 S 8 003 200 000 000 ē N Lab Sample ID (Lab Use Only) when received (C°): ö 5-24-000-12 HAMONAY 1-24-005-15 TH2044 SC-500-43-3 574-025-53 40#:756280 Temp. or coforement: からのなれ prease composite 1-84-038).io - o 1-11-035-75 SL - sludge NOTES: 0109# REQUESTED Time: C - Charcoal tube P/O - Plastic or other_ Time: SK SK ANALYSIS Time: The rep Time. × メ 1 CIII Date: Ch 2017 Date: Date: Date: 8 2 No/Type of Containers 「トキンド・タフ 250 m L - Liquid A - Air Bag 250 ml - Glass wide mouth 1123 ¥₽ H VO A Received by: (Signature) Received by: (Signature) Received by: (Signature) Contact: 972 - 727 -Réceived by: (Signature) Debth ☐ 190% Rush pu∃ Laboratory: Frhe Sampler's Signature Start Depth CROSTORY JANGSON W - Water S - Soil SD - Solid A/G - Amber / Or Glass 1 Liter 800-43-3R 580-43-2R 850-42-18 Identifying Marks of Sample(s) Sc - SED - 42-22 1 SED-42-3R 5€25 ~ 44 ~ / □ 50% Rush 80-150-4-12 PO/SO#: 72-14-ass-78 6c-18-0-11-3R Address: SC-800-41-1R Phone: Time: Time: Time: Time: 10 Environmental & Hydrogeologic Consultants × | SC -□ 25% Rush 2-2-13 06:2013 るしなな outhwest 1/2 LOSON, Date: Date: Date: Project Name × വ – മമ 1250S ೧೦೯೦ \ Normal WW - Wastewater VOA - 40 ml vial Relinquished by Signature) Relinquished by (Signature) Relinquished by (Signature) Relinquished by (Signature) 1322 1878 5451 1248 Sampler's Name 57 Office Location Time 1158 W/19/13 1412 Project Manager 🖈 1216 57 1242 DILLCZASA Turn around time ててどり 6/14/13 Date Matrix Container Matrix 00000 0

SOUTHWEST GEOSCIENCE • 2351 W. Northwest Hwy., Suite 3321 • Dallas, Texas 75220 • Office: 214-350-5469 • Fax 214-350-2914

 $75~\mathrm{W}$ 280 CHAIN OF CUSTODY RECORD 200 200 000 5 5 8 2 M 300 000 8 700 S Lab Sample ID (Lab Use Only) when received (C°): 5-4-05-35 5-54-005-25 ₽ Sc -500-46-3 Temp. of coolers 5-44-020-75 Lab use only က Close Carpaine the following: Due Date: 2 300 2 Page. からってなり 大なつのオ THEBUGH THERE COM 1-63 #3 56-550-44-1 1-95 1-17-08- 28- 28- 28 <u>io</u> - o Sc -560-- 085 -SL - sludge NOTES: REQUESTED 13 3/eps 97.J C - Charcoal tube P/O - Plastic or other Time: ANALYSIS Time: Time: 83 Time: × ヌ Y 4/20/13 262013 TIAN! Date: Date: 8 × 7 No/Type of Containers 250 ml L - Liquid A - Air Bag 250 ml - Glass wide mouth A'G Phone: 972-727-1123 ΛOA Received by: (Signature) Received by: (Signature) Received by: (Signature) Debth ☐ 100% Rush pu∃ Sampler's Signature— Start Depth W - Water S - Soil SD - Solid A/G - Amber / Or Glass 1 Liter Laboratory: 1-6h - 035 Identifying Marks of Sample(s) 156-3 8 C - 8CD — 47-2. 25% Rush □ 50% Rush 7-05-Sc- 550 - 45-3 2-Sh - Ces - 75 PO/SO #: Address: Contact: SC-880-44-2 8-14-3 1-9% - Cas - SED-45-Time: Time: 0855 Time: Time: SERVENT Séb BI Environmental & Hydrogeologic Consultants Date: ☐ 25% Rush 1000 C 26-20-13 S Date: Date: Š Date: 1 ~ 250N Project Name >മംചയ MA ೧೦೯೦ Normal WW - Wastewater VOA - 40 ml vial Relinquished by (Signature) Relinquished by (Signature) Relinquished by (Signature) Helinquished by (Signature) 1447 08% 1502 5051 2251 ShS1 81/61/0 3051 444 5121 8151 Time Sampler's Name K.I Project Manager_ カルトンこう Office Location Turn around time 6/19/13 Date てきるり Matrix Container Proj. No. Matrix 00

0 0 0

0

SOUTHWEST GEOSCIENCE • 2351 W. Northwest Hwy., Suite 3321 • Dallas, Texas 75220 • Office: 214-350-5469 • Fax 214-350-2914

WO # 756280

CHAIN OF CUSTODY RECORD Lab use only Due Date:	Temp. of coolers	0100 3 4 5	of			Lab Sample ID (Lab Use Only)	L00	800	800	200					Cardon Ca	5-8h-025-25 HATOTHE			
ANALYSIS	Address: Address:		Project Manager ∠ > ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- Labore	Project Name	Time C G I Identifying Marks	S 6/19/13 1548 4 SC-50-47-3	- SE	V Sc -	5 6/4/13 1611 × 50-565-48-3		20160		Turn around time Normal 7.25% Bush 750% Bush 7100% Bush	Signature) Date: Time: Received by Signature) Date: Time: NOTES:	Time: (Received by: (Signature) Date:	V. (Signature), Date: Time:	(Signature) Date: Time: Réceived/by: (Signaturé) Date:	Matrix WWW - Wastewater W - Water S - Soil SD - Solid L - Liquid A - Air Bag C - Charcoal tube SL - sludge O - Oil Container VOA - 40 ml Vial A/G - Amber / Or Glass 1 Liter 250 ml - Glass wide mouth P/O - Plastic or other

SOUTHWEST GEOSCIENCE • 2351 W. Northwest Hwy., Suite 3321 • Dallas, Texas 75220 • Office: 214-350-5469 • Fax 214-350-2914

Sample Condition Upon Receipt

Face Analytical Client Name: Southwest Geoscience Pace #: 156280

Courier: Fed Ex UPS USPS Client	XCc	urier	□LS	O Pace		Other	
Tracking #: <u>Falcon-X-press</u>	r3			. : '\a '			
Custody Seal on Cooler/Box Present: 💢 yes	□no		Seals	intact: 🏋 yes	∐ no	∐ N/A	
Packing Material: Bubble Wrap Bubble E	Bags	∏No	ne [X Other			
Thermometer Used (IR-01) IR-02	Type o	of Ice:	(Wet)) Blue None	X Sam	ples on ice, cooling	process has begun
Cooler Temperature 0.80C	Ice V	isible	in San	nple Containers:	yes yes	☐ no	
(Corrected, if applicable) Temp should be above freezing to 6°C				Comments:		Date and Initials of contents:	person examining
Sample Receiving						contents. TWY	4 01 15
Chain of Custody Present:	© Yes	□No	□n/a	1.			4
Chain of Custody Filled Out:	Yes	□No	□N/A	2.			
Chain of Custody Relinquished:	Yes	□No	□n/a	3.			
Sampler Name & Signature on COC:	Yes	□No	□n/a	4.			
Short Hold Time Analysis (<72hr):	□Yes	Щю	□N/A	5.			
Rush Turn Around Time Requested:	□Yes	[]No	□n/a	6.			
Containers Intact:	Yes	□No	□n/a	7.			
Sample Labels match COC:	Yes	□No	□n/a	8.			
-Includes date/time/ID/Analysis							
All containers needing acid/base pres. have been checked?	□Yes	□No	PN/A			SO4 NaOH	HCI
exceptions: VOA, coliform, O&G			1	If applicable see belo	ow.		
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes	□No	P N/A	pH strip lot #:			
·			`	Potassium lodide :	etrip lot #:		
				otassiam todiae	5ti (p 10t #.		
				Lead Acetate strip	lot#:		
Headspace in VOA Vials (>6mm):	□Yes	□No	YON /A	10.	·		
Trip Blank Present:	□Yes	□No	PN/A				
Trip Blank Custody Seals Present	□Yes	□No	/2n/a				
Samples Arrived within Hold Time:	Yes	□No	□n/a	1			
Sufficient Volume:	Yes	□No	□n/a	13.			
Correct Containers Used: Client Notification/ Resolution:	Yes	□No	□n/a	14.		Markaba — n enga syring yaya sanibana tana sa sa ƙaisa ƙasar	
			Date	Time:			
Person Contacted: Comments/ Resolution:			_ Dalei	Time.		_	•
		Δ					
Project Manager Review:		Pr				Date:	6-21-13

Sample Container Count

Pace Project # 75 6 280 COC PAGE ___

Face Analytical"
www.paceless.com

Comments												
BG1H AG1S BP20 SP5T WGFU WGKU												
r wg	<u>w</u>	M	5	6~	\searrow	7	M	' L)				
SP5												
BP20												
AG1S												
ВСЛН												
BP2U												
BP2N AG1U VG9U VG9H BP2S BP1U BP2U												
BP2S												
H69/					and the same of th							
(G9U)			!									
G1U V												
22N A												
	,		-									
Sample Line Item	_	- ~	1 67	4	5	9	7	- ∞	0	10	7	12

,	Container Codes						
DG9H	40mL HCL amber voa vial	AF	AF Air Filter	BP1N	BP1N 1 liter HNO3 plastic	DG9P	DG9P 40mL TSP amber vial
AG10	Titer unpreserved amber glass	1	AG1H 1 liter HCL amber glass	BP1S	BP1S 1 liter H2SO4 plastic	DG9S	DG9S 40mL H2SO4 amber vial
WGFU	WGFU 4oz clear soil iar	1	AG1S 1 liter H2SO4 amber glass	BP1U	1 liter unpreserved plastic	DG9T	DG9T 40mL Na Thio amber vial
ı œ	terra core kit	AG1T	AG1T 1 liter Na Thiosulfate amber gl	BP1Z	BP1Z 1 liter NaOH, Zn, Ac	DG90	DG9U 40mL unpreserved amber vial
BP2N	BP2N 500mL HNO3 plastic	AG2N	AG2N 500mL HNO3 amber glass	BP2A	500mL NaOH, Asc Acid plastic		Wipe/Swab
BP2U	500mL unpreserved plastic	AG2S	AG2S 500mL H2SO4 amber glass	BP20	BP2O 500mL NaOH plastic	JGFU	4oz unpreserved amber wide
BP2S	500mL H2SO4 plastic	AG2U	AG2U 500mL unpreserved amber gla	BP2Z	BP2Z 500mL NaOH, Zn Ac	ס	U Summa Can
BP3N	BP3N 250mL HNO3 plastic	AG3U	AG3U 250mL unpreserved amber gla	BP3A	BP3A 250mL NaOh, Asc Acid plastic	V G9H	VG9H 40mL HCL clear vial
BP3U	250mL unpreserved plastic	BG1H	BG1H 1 liter HCL clear glass	BP3C	BP3C 250mL NaOH plastic	VG9T	VG9T 40mL Na Thio. clear vial
	BP3S 250ml H2SO4 plastic	BG1S	BG1S 1 liter H2SO4 clear glass	BP3Z	BP3Z 250mL NaOH, Zn Ac plastic	VG9U	VG9U 40mL unpreserved clear vial
AG3S	AG3S 250ml H2SO4 dlass amber	BG1T	BG1T 1 liter Na Thiosulfate clear gla	O	C Air Cassettes	VSG	VSG Headspace septa vial & HCL
AG1S	AG1S 1 liter H2SO4 amber class	BG1U	BG1U 1 liter unpreserved glass	DG9B	DG9B 40mL Na Bisulfate amber vial	WGFX	WGFX 4oz wide jar w/hexane wipe
BP1U	BP1U 1 liter unpreserved plastic	BP1A	BP1A 1 liter NaOH, Asc Acid plastic	DG9M	DG9M 40mL MeOH clear vial	ZPLC	ZPLC Ziploc Bag
WGKU	WGKU 8oz wide jar upreserved	SP5T	SP5T 120mL Coliform Na Thiosulfate	SP5U	SP5U 120mL Coliform unpreserved	N5	GN General unpreserved
Other Other	Other						