

DRAFT

SURFACE WATER, SOLIDS AND DISCHARGE WATER SAMPLING ACTIVITIES RESULTS SUMMARY

For:

Stewart Creek – Former Operating Plant Frisco, Collin County, Texas

> Prepared for: City of Frisco c/o

Russell & Rodriguez, L.L.P.

1633 Williams Drive Building 2, Suite 200 Georgetown, TX 78628

Prepared by:

Apex TITAN, Inc.

2351 W. Northwest Highway, Suite 3321 Dallas, Texas 75220 (214) 350-5469 www.apexcos.com

> July 2, 2015 Project 7020112C079

Figure 1

Stewart Creek FOP Surface Water, Solids and Discharge Water Sample Location Map

DRAFT

Surface Water, Solids and Discharge Water Sampling Stewart Creek FOP Frisco, Texas

Apex TITAN, Inc. 2351 W. Northwest Highway

Dallas, Texas 75220 Phone: (214) 350-5469 www.apexcos.com
A Subsidiary of Apex Companies, LLC

FIGURE 1

Stewart Creek FOP Surface Water, Solids and Discharge **Water Sample Location Map**

Aerial Photograph March 2015

Project No. 7020112C079

Summary Tables

Table 1 – Solid Sample Analytical Results

Table 2 – Surface Water Analytical Results

Table 3 – Surface Water Quality Parameters

Table 1 Solid Sample Analytical Results Stewart Creek - Former Operating Plant Frisco, Texas

Committee ID	D. L.	pН	Percent Solids	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Lead	Magnesium	Mercury	Nickel	Selenium	Silver	Sulfate
Sample ID	Date	(Unitless)	(%)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
TRRP Ecological Bene	chmarks for Sediment	NA	NA	2	9.79	NE	NE	0.99	NE	43.4	35.8	NE	0.18	22.7	NE	1	NA
TRRP Ecological Protect	tive Concentration Level	NA	NA	13.5*	21.4*	NE	NE	2.985*	NE	77.2*	81.9*	NE	0.62*	35.65*	NE	1.6*	NA
TCEQ Second Effects	Levels for Sediment	NA	NA	25	33	NE	NE	4.98	NE	111	128	NE	1.06	48.6	NE	2.2	NA
TRRP Human Health Concentrate		NA	NA	83	24	23,000	27	1,100	NE	36,000	500 (250) ¹	NE	34	1,400	2,700*	350	NE
Sediment Near the Fo (Source: Exide APAR (2 Report (Au	2014) and Interim Action gust 2014))	NA	NA	NA	57.9	NA	NA	4.53 J	NA	NA	19,100	NA	NA	NA	NA	NA	NA
TRRP Tier 1 Reside	ource Area)	NA	NA	2.7**	3.1	220	0.92	30**	NE	1,200**	280	NE	0.0039	79**	1.6	0.24	NE
TRRP Tier 1 Resider	ntial Total Soil Comb PCL	NA	NA	15	24	8,100	38	52	NE	27,000	500	NE	2.1	840	310	97	NE
Site-Specific	Background	NA	NA	1	15.9**	NE	NE	NE	NE	NE	31.5**	NE	NE	NE	NE	NE	NE
Frisco Backgroun	Frisco Background Concentrations		NA	NE	8.6	161	NE	0.4	NE	32.7	13.7	NE	0.019	NE	2.1**	0.44**	NE
TRRP Texas-Spe	cific Background	NA	NA	1	5.9	300**	1.5**	NE	NE	30	15	NE	0.04**	10	0.3	NE	NE
Maximum Concent Detected		NA	NA	102	115	131	0.806	984	NA	22.4	95,000	NA	0.013 J	12.4	29.2	NA	8,710
						Total	Metals and	l Sulfate									
2015-COF-SOLID-01 (0-0.25)	6/8/2015	8.70	57.8	0.085 J	5.0	224	<0.024	1.7	342,000	0.54	1,030	2,130	<0.021	2.6	0.66 J	<0.031	75.2
2015-COF-SOLID-02 (0-0.25)	6/8/2015	10.03	54.7	0.12 J	10.1	226	<0.025	0.23 J	335,000	0.36 J	870	3,780	<0.021	2.2	1.1	<0.033	311
					Toxicit	v Characte	ristic Leach	ng Procedu	ire (TCLP)								
		pH	Percent Solids	Antimony	Arsenic	Barium	Bervllium		Calcium	Chromium	Lead	Magnesium	Mercury	Nickel	Selenium	Silver	Sulfate
Sample ID	Date	(Unitless)	(%)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
TCLP Regul	atory Levels	< 2 or > 12.5	()	NE	5.0	100.0	NE	1.0	NE	5.0	5.0	NE	0.2	NE	1.0	5.0	NE
	TCEQ Class 1 Toxic Constituents' Maximum Leachable Concentrations		NA	1	1.8	100.0	0.08	0.5	NE	5.0	1.5	NE	0.2	70	1.0	5.0	NE
2015-COF-SOLID-01 (0-0.25)	6/8/2015	8.70	57.8	<0.0051	0.0074 J	0.48 J	<0.00080	0.0070 J	N/A	0.0049 J	0.14	N/A	<0.000050	0.020 J	<0.0049	<0.0012	N/A
2015-COF-SOLID-02 (0-0.25)	6/8/2015	10.03	54.7	<0.0051	<0.0050	0.46 J	<0.00080	0.0011 J	N/A	<0.0014	0.23	N/A	<0.000050	0.013 J	<0.0049	<0.0012	N/A

NE - Not Established

N/A - Not Analyzed

NA - Not Applicable

mg/Kg - miligrams per kilogram

Italicized RBEL or PCL - RBEL or PCL listed in Table 7A of Exide's APAR dated May 2014

Maximum concentrations based on Exide's APAR dated May 2014

Bold and shading indicates a concentration above the TRRP Ecological Benchmark for Sediment.

Bold and shading indicates a concentration above the TRRP Critical Protective Concentration Level.

Bold and shading indicates a concentration above the TCEQ Second Effects Level for sediment.

Bold and shading indicates a concentration above the TRRP Human Health Sediment Protective Concentration Levels.

Italicized and gray shading indicates a concentration detected above a Critical soil PCL (if evaluated as a soil sample).

Benchmarks obtained from the TCEQ guidance document Conducting Ecological Risk Assessments at Remediation Sites in Texas RG-263 (Revised Draft), dated January 2014.

Site-Specific Background concentrations obtained from a letter to TCEQ titled Revised Site-specific Background Soil Concentration Evaluation , dated May 30, 2013, prepared by PBW, L.L.C.

Frisco Background Concentrations obtained from the Background Study report prepared by Southwest Geoscience, dated March 4, 2014

^{*} Applicable Sediment PCL

^{**} Applicable Soil PCL

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

^{1 -} Based on an agreement between the City of Frisco and Exide Technologies, Inc., the Tier 1 Human Health PCL was established as 250 mg/Kg.

Table 2 Surface Water Analytical Results Stewart Creek - Former Operating Plant Frisco, Texas

Sample ID	Date	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Lead	Magnesium	Mercury	Nickel	Selenium	Silver	Sulfate
Sample ID	Date	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
Acute Aquation	c Life RBEL	NE	0.340 ¹	NE	NE	0.00908 ²	NE	NE	0.0688 ²	NE	0.0024 ¹	0.000792+	0.020 ¹	0.00081*	NE
Chronic Aquat	tic Life RBEL	NE	0.150 ¹	NE	NE	0.0002562*	NE	NE	0.00268 ^{2*}	NE	0.0013 ^{1*}	0.000602+*	0.0051*	NE	NE
Human Health RBEL	Values (Fish Only)	10.71 ³	NE	NE	NE	NE	NE	NE	0.0383 ³	NE	0.0001223	11.4 ³	NE	NE	NE
TRRP Human Health Co	ontact Recreation PCL	0.1994*	0.0285 ^{4*}	64.9 ^{4*}	0.09434*	0.149 ⁴	NE	126 ⁴	0.015 ⁵	NE	0.0973 ⁵	11.3 ⁵	4.13 ⁴	1.57 ⁴	NE
Maximum Concentrations Previously Detected (Source: Exide APAR (2014))		NA	0.00393	NA	NA	0.002 J	NA	NA	0.0046 J	NA	NA	NA	NA	NA	127
						Dissolved	Metals								
2015-COF-DW-01	6/8/2015	0.0274	0.0097	0.0128	<0.00026	0.0043	9.33	0.0020	0.0487	1.76	<0.000050	0.0022 J	0.0069	<0.00020	N/A
2015-COF-SW-01	6/8/2015	<0.00072	0.00095 J	0.0936	<0.00026	<0.00027	142	0.00065 J	<0.00048	5.84	<0.000050	0.0014 J	0.0014 J	<0.00020	N/A
2015-COF-SW-02	6/8/2015	<0.00072	0.0014 J	0.0870	<0.00026	<0.00027	128	0.00042 J	0.00220	5.52	<0.000050	0.0014 J	0.0014 J	<0.00020	N/A
						Total Metals	and Sulfate	:							
2015-COF-DW-01	6/8/2015	0.0213	0.0158	0.115	0.00051 J	0.0228	24.1	0.0253	0.765	9.51	<0.000050	0.0179	0.0068	<0.00020	856
2015-COF-SW-01	6/8/2015	<0.00072	0.0010 J	0.0949	<0.00026	<0.00027	143	0.00036 J	0.002	5.79	<0.000050	0.0014 J	0.0011 J	<0.00020	1190
2015-COF-SW-02	6/8/2015	<0.00072	0.0014 J	0.0960	<0.00026	<0.00027	143	0.00040 J	0.0123	5.83	<0.000050	0.0015 J	0.0014 J	<0.00020	1190

N/A - Not Analyzed

NA - Not Applicable

NE - Not Established

mg/L - miligrams per liter

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

Italicized RBEL or PCL - RBEL or PCL listed in Table 6A of Exide's APAR dated May 2014

Maximum Concentrations Detected based on Exide's APAR dated May 2014

Bold and shading indicates a concentration above the Acute Aquatic Life RBEL for Surface Water.

Bold and shading indicates a concentration above the TRRP Critical Protective Concentration Level (Chronic Aquatic Life RBEL).

Bold and shading indicates a concentration above the TCEQ Human Health RBEL values.

Bold and shading indicates a concentration above the TRRP Human Health Surface Water Protective Concentration Levels.

Gray shading indicates dissolved metals samples.

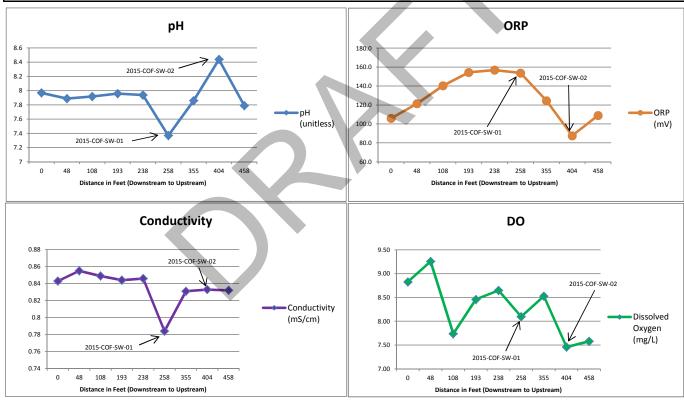
^{*} Applicable Surface Water PCL

¹ - TCEQ Aquatic Life RBELs - Texas Surface Water Quality Standards, 2014

² - Calculated RBEL (Assuming a Hardness of 106 mg/L) - Texas Surface Water Quality Standards, 2014

²⁺ - Calculated RBEL by Apex (Assuming a Hardness of 106 mg/L) - Texas Surface Water Quality Standards, 2014

³ - TCEQ Human Health RBELs, 2014 (Assuming a Second Order Perennial Stream)


⁴ - TCEQ Tier 1 Contact Recreation Water PCLs, March 2006

⁵ - Contact Recreation PCL Not Established - Drinking Water Standard Utilized

⁶ - Based on Maximum Contaminant Levels (MCLs) specified in 30 TAC §290 (relating to Public Drinking Water)

Table 3 Surface Water Quality Parameters Stewart Creek - Former Operating Plant Frisco, Texas

Location	Date	Depth (Feet)	Temperature (°C)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	pH (unitless)	ORP (mV)	Distance (Downstream to Upstream in Feet)			
SC-1	6/8/2015	0.5	28.03	0.843	8.83	7.97	106.0	0			
SC-2	6/8/2015	0.33	27.92	0.855	9.26	7.89	121.5	48			
SC-3	6/8/2015	1.5	27.84	0.849	7.74	7.92	140.4	108			
SC-4	6/8/2015	0.5	27.41	0.844	8.46	7.96	154.5	193			
SC-5	6/8/2015	0.67	27.29	0.846	8.65	7.94	157.0	238			
2015-COF-SW-01	6/8/2015	0.33	27.10	0.784	8.10	7.37	153.8	258			
SC-6	6/8/2015	0.33	26.78	0.831	8.53	7.86	124.6	355			
2015-COF-SW-02	6/8/2015	0.5	26.68	0.833	7.46	8.44	87.7	404			
SC-7	6/8/2015	1	26.49	0.832	7.58	7.79	109.1	458			
Discharge Water From Waste Water Pipe											
2015-COF-DW-01	6/8/2015	N/A	27.93	0.520	6.95	11.00	228.7	N/A			

Surface Water and Discharge Water Analytical Results

Accutest Laboratories Report Dated June 23, 2015

Accutest Job Number: TC68547

06/23/15

Technical Report for

APEX TITAN, Inc.

7020112C079 / Stewart Creek

7020112C079

Accutest Job Number: TC68547

Sampling Date: 06/08/15

Report to:

APEX TITAN, Inc. 2351 W. Northwest Hwy Suite 3321 Dallas, TX 75220 JMinter@apexcos.com

ATTN: Jason Minter

Total number of pages in report: 40

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Sylvia Garza 713-271-4700

Certifications: TX (T104704220-15-21, 1M104704220-15-2) AR (14-016-0) AZ (AZ0769) FL (E87628) KS (E-10366) LA (85695/04004) NJ (TX010) OK (2014-172) VA (7654)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Laboratory Director

 $Gulf \ Coast \bullet 10165 \ Harwin \ Drive \bullet Suite \ 150 \bullet Houston, \ TX \ 77036 \bullet tel: \ 713-271-4700 \bullet fax: \ 713-271-4770 \bullet http://www.accutest.com/restartional-energy-en$

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Summary of Hits	
Section 4: Sample Results	7
4.1: TC68547-1: 2015-COF-SW-01	
4.2: TC68547-1F: 2015-COF-SW-01	10
4.3: TC68547-2: 2015-COF-SW-02	11
4.4: TC68547-2F: 2015-COF-SW-02	13
4.5: TC68547-3: 2015-COF-DW-01	14
4.6: TC68547-3F: 2015-COF-DW-01	16
Section 5: Misc. Forms	17
5.1: Chain of Custody	18
5.2: LRC Form	21
Section 6: Metals Analysis - QC Data Summaries	25
6.1: Prep QC MP26096: Sb,As,Ba,Be,Cd,Ca,Cr,Pb,Mg,Ni,Se,Ag	26
6.2: Prep QC MP26097: Hg	31
6.3: Metals CCB MDL Check	35
Section 7: General Chemistry - QC Data Summaries	36
7.1: Method Blank and Spike Results Summary	37
7.2: Duplicate Results Summary	38
7.3: Matrix Spike Results Summary	39
7.4: General Chemistry CCB MDL Check	40

•

ග

Sample Summary

APEX TITAN, Inc.

Job No: TC68547

7020112C079 / Stewart Creek Project No: 7020112C079

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
TC68547-1	06/08/15	18:53	06/10/15	AQ	Water	2015-COF-SW-01
TC68547-1F	06/08/15	18:53	06/10/15	AQ	Water Filtered	2015-COF-SW-01
TC68547-2	06/08/15	19:55	06/10/15	AQ	Water	2015-COF-SW-02
TC68547-2F	06/08/15	19:55	06/10/15	AQ	Water Filtered	2015-COF-SW-02
TC68547-3	06/08/15	20:50	06/10/15	AQ	Water	2015-COF-DW-01
TC68547-3F	06/08/15	20:50	06/10/15	AQ	Water Filtered	2015-COF-DW-01

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: APEX TITAN, Inc. Job No TC68547

Site: 7020112C079 / Stewart Creek Report Date 6/23/2015 9:39:42 AM

3 Samples were collected on 06/08/2015 and received intact at Accutest on 06/10/2015 and properly preserved in 1 cooler at 0.8 Deg C. These Samples received an Accutest job number of TC68547. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Metals By Method SW846 6020A

Matrix AQ Batch ID: MP26096

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) TC68547-1MS, TC68547-1MSD, TC68547-1SDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Arsenic, Chromium, Lead, Nickel, Selenium are outside control limits for sample MP26096-SD1.
 Percent difference acceptable due to low initial sample concentration (< 50 times IDL).</p>
- RPD(s) for Serial Dilution for Barium, Magnesium are outside control limits for sample MP26096-SD1. Serial dilution indicates possible matrix interference.

Metals By Method SW846 7470A

Matrix AQ Batch ID: MP26097

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) TC68547-1MS, TC68547-1MSD were used as the QC samples for metals.

Wet Chemistry By Method EPA 300

Matrix AQ Batch ID: GP32525

- All samples were prepared within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) TC68707-10DUP, TC68707-10MS were used as the QC samples for Sulfate.

Accutest Laboratories Gulf Coast (ALGC) certifies that this report meets the project requirements for analytical data produced for the samples as received at ALGC and as stated on the COC. ALGC certifies that the data meets the Data QualityObjectives for precision, accuracy and completeness as specified in the ALGC Quality Manual except as noted above. This report is to be used in its entirety. ALGC is not responsible for any assumptions of data quality if partial data packages are used

4 of 40
ACCUTEST

Summary of Hits Job Number: TC68547

Account: APEX TITAN, Inc.

Project: 7020112C079 / Stewart Creek

Collected: 06/08/15

Lah Samnle ID	Client Sample ID	Result/				
Analyte	Chefit Sample 1D	Qual	MQL	SDL	Units	Method
TC68547-1	2015-COF-SW-01					
Arsenic		0.0010 J	0.0040	0.00054	mg/l	SW846 6020A
Barium		0.0949	0.0020	0.00019	mg/l	SW846 6020A
Calcium		143	0.50	0.019	mg/l	SW846 6020A
Chromium		0.00036 J	0.0020	0.00013	mg/l	SW846 6020A
Lead		0.0020	0.0020	0.00048	mg/l	SW846 6020A
Magnesium		5.79	0.50	0.014	mg/l	SW846 6020A
Nickel		0.0014 J	0.0040	0.00010	mg/l	SW846 6020A
Selenium		0.0011 J	0.0040	0.00054	mg/l	SW846 6020A
Sulfate		1190	25	13	mg/l	EPA 300
TC68547-1F	2015-COF-SW-01					
Arsenic		0.00095 J	0.0040	0.00054	mg/l	SW846 6020A
Barium		0.0936	0.0020	0.00019	mg/l	SW846 6020A
Calcium		142	0.50	0.019	mg/l	SW846 6020A
Chromium		0.00065 J	0.0020	0.00013	mg/l	SW846 6020A
Magnesium		5.84	0.50	0.014	mg/l	SW846 6020A
Nickel		0.0014 J	0.0040	0.00010	mg/l	SW846 6020A
Selenium		0.0014 J	0.0040	0.00054	mg/l	SW846 6020A
TC68547-2	2015-COF-SW-02					
Arsenic		0.0014 J	0.0040	0.00054	m a /1	SW846 6020A
Barium		0.0014 J	0.0040	0.00034	mg/l mg/l	SW846 6020A SW846 6020A
Calcium		143	0.50	0.00019	mg/l	SW846 6020A
Chromium		0.00040 J	0.0020	0.00013	mg/l	SW846 6020A
Lead		0.0123	0.0020	0.00013	mg/l	SW846 6020A
Magnesium		5.83	0.5020	0.014	mg/l	SW846 6020A
Nickel		0.0015 J	0.0040	0.00010	mg/l	SW846 6020A
Selenium		0.0014 J	0.0040	0.00054	mg/l	SW846 6020A
Sulfate		1190	25	13	mg/l	EPA 300
TC68547-2F	2015-COF-SW-02					
Arsenic		0.0014 J	0.0040	0.00054	mg/l	SW846 6020A
Barium		0.0870	0.0040	0.00034	mg/l	SW846 6020A SW846 6020A
Calcium		128	0.50	0.00019	mg/l	SW846 6020A
Chromium		0.00042 J	0.0020	0.00013	mg/l	SW846 6020A
Lead		0.0022	0.0020	0.00013	mg/l	SW846 6020A
Magnesium		5.52	0.50	0.014	mg/l	SW846 6020A
Nickel		0.0014 J	0.0040	0.00010	mg/l	SW846 6020A
Selenium		0.0014 J	0.0040	0.00054	mg/l	SW846 6020A
					C	

Summary of Hits Job Number: TC68547

Account: APEX TITAN, Inc.

Project: 7020112C079 / Stewart Creek

Collected: 06/08/15

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	MQL	SDL	Units	Method
TC68547-3	2015-COF-DW-01					
Antimony Arsenic		0.0213 0.0158	0.0040 0.0040	0.00072 0.00054	mg/l mg/l	SW846 6020A SW846 6020A
Barium		0.115	0.0020	0.00019	mg/l	SW846 6020A
Beryllium Cadmium		0.00051 J 0.0228	0.0020 0.0020	0.00026 0.00027	mg/l mg/l	SW846 6020A SW846 6020A
Calcium Chromium		24.1 0.0253	0.50 0.0020	0.019 0.00013	mg/l mg/l	SW846 6020A SW846 6020A
Lead		0.765	0.0020	0.00048	mg/l	SW846 6020A
Magnesium Nickel		9.51 0.0179	0.50 0.0040	0.014 0.00010	mg/l mg/l	SW846 6020A SW846 6020A
Selenium Sulfate		0.0068 856	0.0040 25	0.00054 13	mg/l mg/l	SW846 6020A EPA 300
TC68547-3F	2015-COF-DW-01				g/ -	2222000
Antimony		0.0274	0.0040	0.00072	mg/l	SW846 6020A
Arsenic		0.0097	0.0040	0.00054	mg/l	SW846 6020A
Barium		0.0128	0.0020	0.00019	mg/l	SW846 6020A
Cadmium		0.0043	0.0020	0.00027	mg/l	SW846 6020A
Calcium		9.33	0.50	0.019	mg/l	SW846 6020A
Chromium		0.0020	0.0020	0.00013	mg/l	SW846 6020A
Lead		0.0487 1.76	0.0020 0.50	0.00048 0.014	mg/l	SW846 6020A SW846 6020A
Magnesium Nickel		0.0022 J	0.30	0.014	mg/l mg/l	SW846 6020A SW846 6020A
Selenium		0.00223	0.0040	0.00010	mg/l	SW846 6020A

Sample Results	
Report of Analysis	

Report of Analysis

Client Sample ID: 2015-COF-SW-01 Lab Sample ID:

Date Sampled: 06/08/15 TC68547-1 Matrix: **Date Received:** 06/10/15 AQ - Water **Percent Solids:** n/a

Project: 7020112C079 / Stewart Creek

Total Metals Analysis

Analyte	Result	MQL	SDL	Units	DF	Prep	Analyzed I	Ву	Method	Prep Method
Antimony	0.00072 U	0.0040	0.00072	mg/l	2	06/15/15	06/16/15 E	EG	SW846 6020A ²	SW846 3010A ³
Arsenic	0.0010 J	0.0040	0.00054	mg/l	2	06/15/15	06/16/15 E	EG	SW846 6020A ²	SW846 3010A ³
Barium	0.0949	0.0020	0.00019	mg/l	2	06/15/15	06/16/15 E	EG	SW846 6020A ²	SW846 3010A ³
Beryllium	0.00026 U	0.0020	0.00026	mg/l	2	06/15/15	06/16/15 E	EG	SW846 6020A ²	SW846 3010A ³
Cadmium	0.00027 U	0.0020	0.00027	mg/l	2	06/15/15	06/16/15 E	EG	SW846 6020A ²	SW846 3010A ³
Calcium	143	0.50	0.019	mg/l	2	06/15/15	06/16/15 E	EG	SW846 6020A ²	SW846 3010A ³
Chromium	0.00036 J	0.0020	0.00013	mg/l	2	06/15/15	06/16/15 E	EG	SW846 6020A ²	SW846 3010A ³
Lead	0.0020	0.0020	0.00048	mg/l	2	06/15/15	06/16/15 E	EG	SW846 6020A ²	SW846 3010A ³
Magnesium	5.79	0.50	0.014	mg/l	2	06/15/15	06/16/15 E	EG	SW846 6020A ²	SW846 3010A ³
Mercury	0.000050 U	0.00020	0.000050	mg/l	1	06/15/15	06/15/15	CC	SW846 7470A ¹	SW846 7470A ⁴
Nickel	0.0014 J	0.0040	0.00010	mg/l	2	06/15/15	06/16/15 E	EG	SW846 6020A ²	SW846 3010A ³
Selenium	0.0011 J	0.0040	0.00054	mg/l	2	06/15/15	06/16/15 E	EG	SW846 6020A ²	SW846 3010A ³
Silver	0.00020 U	0.0020	0.00020	mg/l	2	06/15/15	06/16/15 E	EG	SW846 6020A ²	SW846 3010A ³

(1) Instrument QC Batch: MA11098 (2) Instrument QC Batch: MA11105 (3) Prep QC Batch: MP26096

(4) Prep QC Batch: MP26097

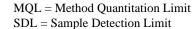
TC68547

U = Indicates a result < SDL

Report of Analysis

Client Sample ID: 2015-COF-SW-01

 Lab Sample ID:
 TC68547-1
 Date Sampled:
 06/08/15


 Matrix:
 AQ - Water
 Date Received:
 06/10/15

 Percent Solids:
 n/a

Project: 7020112C079 / Stewart Creek

General Chemistry

Analyte	Result	MQL	SDL	Units	DF	Analyzed l	Ву М	lethod
Sulfate	1190	25	13	mg/l	50	06/18/15 15:34 H	ES EF	PA 300

U = Indicates a result < SDL J = Indicates a result >= SDL but < MQL

4

Report of Analysis

Client Sample ID: 2015-COF-SW-01 Lab Sample ID: TC68547-1F Matrix: AQ - Water Filtered

Date Sampled: 06/08/15 **Date Received:** 06/10/15 **Percent Solids:** n/a

Project: 7020112C079 / Stewart Creek

Dissolved Metals Analysis

Analyte	Result	MQL	SDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Antimony	0.00072 U	0.0040	0.00072	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Arsenic	0.00095 J	0.0040	0.00054	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Barium	0.0936	0.0020	0.00019	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Beryllium	0.00026 U	0.0020	0.00026	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Cadmium	0.00027 U	0.0020	0.00027	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Calcium	142	0.50	0.019	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Chromium	0.00065 J	0.0020	0.00013	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Lead	0.00048 U	0.0020	0.00048	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Magnesium	5.84	0.50	0.014	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Mercury	0.000050 U	0.00020	0.000050	mg/l	1	06/15/15	06/15/15 CC		SW846 7470A ⁴
Nickel	0.0014 J	0.0040	0.00010	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Selenium	0.0014 J	0.0040	0.00054	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Silver	0.00020 U	0.0020	0.00020	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³

(1) Instrument QC Batch: MA11098 (2) Instrument QC Batch: MA11105 (3) Prep QC Batch: MP26096 (4) Prep QC Batch: MP26097

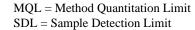
> ACCUTEST TC68547

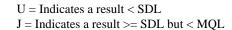
MQL = Method Quantitation Limit SDL = Sample Detection Limit

U = Indicates a result < SDLJ = Indicates a result >= SDL but < MQL

Report of Analysis

Client Sample ID: 2015-COF-SW-02


Lab Sample ID:TC68547-2Date Sampled:06/08/15Matrix:AQ - WaterDate Received:06/10/15Percent Solids:n/a


Project: 7020112C079 / Stewart Creek

Total Metals Analysis

Analyte	Result	MQL	SDL	Units	DF	Prep	Analyzed B	y Method	Prep Method
Antimony	0.00072 U	0.0040	0.00072	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Arsenic	0.0014 J	0.0040	0.00054	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Barium	0.0960	0.0020	0.00019	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Beryllium	0.00026 U	0.0020	0.00026	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Cadmium	0.00027 U	0.0020	0.00027	mg/l	2	06/15/15	06/16/15 EG	_	SW846 3010A ³
Calcium	143	0.50	0.019	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Chromium	0.00040 J	0.0020	0.00013	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Lead	0.0123	0.0020	0.00048	mg/l	2	06/15/15	06/16/15 EG	2	SW846 3010A ³
Magnesium	5.83	0.50	0.014	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Mercury	0.000050 U	0.00020	0.000050) mg/l	1	06/15/15	06/15/15 co		SW846 7470A ⁴
Nickel	0.0015 J	0.0040	0.00010	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Selenium	0.0014 J	0.0040	0.00054	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Silver	0.00020 U	0.0020	0.00020	mg/l	2	06/15/15	06/16/15 EG	•	SW846 3010A ³

(1) Instrument QC Batch: MA11098(2) Instrument QC Batch: MA11105(3) Prep QC Batch: MP26096(4) Prep QC Batch: MP26097

Report of Analysis

Client Sample ID: 2015-COF-SW-02

Lab Sample ID: TC68547-2 **Date Sampled:** 06/08/15 Matrix: **Date Received:** 06/10/15 AQ - Water Percent Solids: n/a

Project: 7020112C079 / Stewart Creek

General Chemistry

Analyte	Result	MQL	SDL	Units	DF	Analyzed By Method
Sulfate	1190	25	13	mg/l	50	06/18/15 15:51 ES EPA 300

4

Report of Analysis

Client Sample ID: 2015-COF-SW-02
Lab Sample ID: TC68547-2F
Matrix: AQ - Water Filtered

Date Sampled: 06/08/15
Date Received: 06/10/15
Percent Solids: n/a

Project: 7020112C079 / Stewart Creek

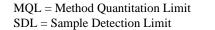
Dissolved Metals Analysis

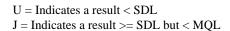
Analyte	Result	MQL	SDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Antimony	0.00072 U	0.0040	0.00072	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Arsenic	0.0014 J	0.0040	0.00054	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Barium	0.0870	0.0020	0.00019	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Beryllium	0.00026 U	0.0020	0.00026	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Cadmium	0.00027 U	0.0020	0.00027	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Calcium	128	0.50	0.019	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Chromium	0.00042 J	0.0020	0.00013	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Lead	0.0022	0.0020	0.00048	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Magnesium	5.52	0.50	0.014	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Mercury	0.000050 U	0.00020	0.000050	mg/l	1	06/15/15	06/15/15 CC	SW846 7470A ¹	SW846 7470A ⁴
Nickel	0.0014 J	0.0040	0.00010	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Selenium	0.0014 J	0.0040	0.00054	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Silver	0.00020 U	0.0020	0.00020	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³

(1) Instrument QC Batch: MA11098(2) Instrument QC Batch: MA11105(3) Prep QC Batch: MP26096(4) Prep QC Batch: MP26097

Report of Analysis

Client Sample ID: 2015-COF-DW-01


Lab Sample ID:TC68547-3Date Sampled:06/08/15Matrix:AQ - WaterDate Received:06/10/15Percent Solids:n/a


Project: 7020112C079 / Stewart Creek

Total Metals Analysis

Analyte	Result	MQL	SDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Antimony	0.0213	0.0040	0.00072	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Arsenic	0.0158	0.0040	0.00054	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Barium	0.115	0.0020	0.00019	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Beryllium	0.00051 J	0.0020	0.00026	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Cadmium	0.0228	0.0020	0.00027	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Calcium	24.1	0.50	0.019	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Chromium	0.0253	0.0020	0.00013	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Lead	0.765	0.0020	0.00048	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Magnesium	9.51	0.50	0.014	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Mercury	0.000050 U	0.00020	0.000050	mg/l	1	06/15/15	06/15/15 CC	SW846 7470A ¹	SW846 7470A ⁴
Nickel	0.0179	0.0040	0.00010	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Selenium	0.0068	0.0040	0.00054	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³
Silver	0.00020 U	0.0020	0.00020	mg/l	2	06/15/15	06/16/15 EG	SW846 6020A ²	SW846 3010A ³

(1) Instrument QC Batch: MA11098(2) Instrument QC Batch: MA11105(3) Prep QC Batch: MP26096(4) Prep QC Batch: MP26097

4

Report of Analysis

Client Sample ID: 2015-COF-DW-01

 Lab Sample ID:
 TC68547-3
 Date Sampled:
 06/08/15

 Matrix:
 AQ - Water
 Date Received:
 06/10/15

 Percent Solids:
 n/a

Project: 7020112C079 / Stewart Creek

General Chemistry

Analyte	Result	MQL	SDL	Units	DF	Analyzed By Method
Sulfate	856	25	13	mg/l	50	06/18/15 16:30 ES EPA 300

MQL = Method Quantitation Limit SDL = Sample Detection Limit U = Indicates a result < SDL J = Indicates a result >= SDL but < MQL

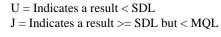
____1

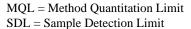
ACCUTEST

TC68547

Report of Analysis

Client Sample ID: 2015-COF-DW-01
Lab Sample ID: TC68547-3F
Matrix: AQ - Water Filtered


Date Sampled: 06/08/15
Date Received: 06/10/15
Percent Solids: n/a


Project: 7020112C079 / Stewart Creek

Dissolved Metals Analysis

Analyte	Result	MQL	SDL	Units	DF	Prep	Analyzed F	Ву	Method	Prep Method
Antimony	0.0274	0.0040	0.00072	mg/l	2	06/15/15	06/16/15 E	EG	SW846 6020A ²	SW846 3010A ³
Arsenic	0.0097	0.0040	0.00054	mg/l	2	06/15/15	06/16/15 E	EG	SW846 6020A ²	SW846 3010A ³
Barium	0.0128	0.0020	0.00019	mg/l	2	06/15/15	06/16/15 E	EG	SW846 6020A ²	SW846 3010A ³
Beryllium	0.00026 U	0.0020	0.00026	mg/l	2	06/15/15	06/16/15 E	EG	SW846 6020A ²	SW846 3010A ³
Cadmium	0.0043	0.0020	0.00027	mg/l	2	06/15/15	06/16/15 E	EG	SW846 6020A ²	SW846 3010A ³
Calcium	9.33	0.50	0.019	mg/l	2	06/15/15	06/16/15 E	EG	SW846 6020A ²	SW846 3010A ³
Chromium	0.0020	0.0020	0.00013	mg/l	2	06/15/15	06/16/15 E	EG	SW846 6020A ²	SW846 3010A ³
Lead	0.0487	0.0020	0.00048	mg/l	2	06/15/15	06/16/15 E	EG	SW846 6020A ²	SW846 3010A ³
Magnesium	1.76	0.50	0.014	mg/l	2	06/15/15	06/16/15 E	EG	SW846 6020A ²	SW846 3010A ³
Mercury	0.000050 U	0.00020	0.000050) mg/l	1	06/15/15	06/15/15 C	CC	SW846 7470A ¹	SW846 7470A ⁴
Nickel	0.0022 J	0.0040	0.00010	mg/l	2	06/15/15	06/16/15 E	EG	SW846 6020A ²	SW846 3010A ³
Selenium	0.0069	0.0040	0.00054	mg/l	2	06/15/15	06/16/15 E	EG	SW846 6020A ²	SW846 3010A ³
Silver	0.00020 U	0.0020	0.00020	mg/l	2	06/15/15	06/16/15 E	EG	SW846 6020A ²	SW846 3010A ³

(1) Instrument QC Batch: MA11098(2) Instrument QC Batch: MA11105(3) Prep QC Batch: MP26096(4) Prep QC Batch: MP26097

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Chain of Custody
- LRC Form

																	\$	1.4		•	IC	LOX		V		
																	77	34			CHA	IN OF	F CUS	STODY	REC	OR
	PEX ce Location					Laboratory: Address:	Ace) :19	be				,	AN RE	IALY QUI	A SIE SELECT AL PROPERTY AND ADDRESSED OF THE PROPERTY ADDRESSED	12 Sep. Sep.	T. Methon	₹/				Du Tei	ib use onlise Date: mp. of cooler receive	lors	-,
1						Contact:								-		C.Z	P			/	1/	/ /	4	2 3	4	[5
1	Dolla					Phone: 1	3-7	71.	47	<u>0</u> 0				-		38		1	1	1	III		Par	ge 	lo	
	ect Mana	ger Z-5	(mg	52		PO/SO#:									٠,	23	16	/	/	/	//	/	11	025	,4]
1	oler's Name		·			Sampler's Sign	ature									2 2 4	7	Ι,	/ /	Ι,	Η,	/	101	12.00	,	
Du	son M	(notion				Dort									3	K. T.		1	1	1	-1/1	7				
Proj.	No. DU <i>ZCO</i> F	Α.		ect Na a∧∧	ame XCLCED				พอกั	ype of C	ontak	1ers			X	3 1	/			/	11					
Matrix	1	Time	Com	G F a			E É	∞€	WOA	OH	8-	2.		`	y	3 ·2	/	/		/	/ /					
,	Uave	иле	ř P	å	roemnying iwai	rks of Sample(s)	Deg 9	ក្តី	ž	8 5	M =	뿚릑	à.	24	Y Æ	1 d	/_/		/	_/	/	Lai	5 Sampl	e ID (Lab	Use Only	/}
į)	68-15	1463	<u> </u>	χ.	2015-606		-						4	¥	*	Y										
	6-8-15	1955	<u> </u>	<u>γ</u>	2015-LOP	-20-02	<u></u>			ļ		_,	4	<u>*</u>	1	Υ										
3 0	100875	1050	<u> </u>	¥ρ	2015-CPP	-Du-01	-	<u></u>	<u> </u>	<u> </u>			니	<u> </u>	χĹ	Y.										
W	,,,,,,,		<u> </u>	<u> </u>	TempEl	ank `			Ì		L.			ļ	ļ.,.,			-	ì							
									1	<u> </u>					ļ				-							
									Ì	<u> </u>	<u></u>		<u> </u>	·	Ì			ļ				۸	٨٨		· · · · · · · · · · · · · · · · · · ·	
			07	15			<u> </u>	<u> </u>		<u> </u>			ļ	-				į								A
	<u> </u>	de A	O	ļ				<u> </u>		<u> </u>	<u> </u>			1												
<u> </u>	į		<u> </u>	<u> </u>					<u> </u>	j				ļ	<u> </u>											
										Ì										Í	***					
Relin	around time quished by	(Signature))	Ī		Time: Becei) 160% red by: LEV	(Siena	ature)			Date (rS		141	Sme:				5 ~ 1.							
	quished by quished by	1 UX			Deste:	Time: Resein	ved by: L(1) ved by:	(Signa	ature), ature)	en a		Cjete	k	09	fime:		r-y-	· '9	17	·	1279	VB (C	<i>>-</i> {			
	quished by			_		Time: Recei	ved by:			,		Date): 	7	Firne:											
Mairi Canta		N - Wastiwa iv Ini Da - A			W - Water : A/G - Arnber / O	5 - Soil SD - Su rGl∌ss 1 ≿iler	ŔĠ	L - Liqui 250 mL -	d A	A - Air Ba wide mo	sg nush			rcoal lastic		SL - slu	dge	- (0 - Oil							

Apex TITAN, Inc. • 2351 W. Northwest Hwy., Suite 3321 • Dallas, Texas 75220 • Office: 214-350-5469 • Fax 214-350-2914

TC68547: Chain of Custody Page 1 of 3

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: TC685	547	Client	APEX			Project: SEAWORTCRE	EK			
Date / Time Received: 6/10/2	:015		Delivery	Method	:	Airbill #'s: 617012796104				
No. Coolers: 1	Therm	ID: IR-5;				Temp Adjustment Factor:	0;			
Cooler Temps (Initial/Adjusted	d): #1:((0.8/0.8);								
	or N				or N	Sample Integrity - Documentation	<u>Y</u>	or	N	
1. Custody Seals Present:		 COC F Smpl Dat 		V		Sample labels present on bottles:	✓			
2. Custody Seals Intact:	Ш	4. Shipi Dal	es/Time OK	V		Container labeling complete:	✓			
Cooler Temperature	Y or	r N				3. Sample container label / COC agree:	✓			
1. Temp criteria achieved:	~					Sample Integrity - Condition	<u>Y</u>	or	N	
Cooler temp verification:			-			1. Sample recvd within HT:	✓			
3. Cooler media:	Ice	(Bag)	=			2. All containers accounted for:	✓			
Quality Control Preservation	<u>Y</u> 0	or N N/A	<u> </u>	WTB	STB	3. Condition of sample:		Intact	t	
1. Trip Blank present / cooler:						Sample Integrity - Instructions	<u>Y</u>	or	N	N/A
2. Trip Blank listed on COC:						Analysis requested is clear:	✓			
3. Samples preserved properly:	✓					2. Bottles received for unspecified tests			✓	
4. VOCs headspace free:						3. Sufficient volume recvd for analysis:	~			
						4. Compositing instructions clear:				✓
						5. Filtering instructions clear:				~
Accuted Laboratories					4016E LI-	opuin Drivo				Journa TV 77026
Accutest Laboratories V:713.271.4700						arwin Drive 271.4770				Houston, TX 77036 www/accutest.com

TC68547: Chain of Custody Page 2 of 3

Page 1 of 2

Sample Receipt Log

 Job #:
 TC68547
 Date / Time Received:
 6/10/2015 9:00:00 AM
 Initials:
 BH

Client: APEX

Cooler #	Sample ID:	Vol	Bot #	Location	Pres	рН	Therm ID	Initial Temp	Therm CF	Corrected Temp
1	TC68547-1	500ml	1	МЗВ	N/P	Note #2 - Preservative check not applicable.	IR-5	0.8	0	0.8
1	TC68547-1	500ml	2	МЗВ	N/P	Note #2 - Preservative check not applicable.	IR-5	0.8	0	0.8
1	TC68547-1	500ml	3	МЗВ	HNO3	pH < 2	IR-5	0.8	0	0.8
1	TC68547-1	500ml	4	МЗВ	HNO3	pH < 2	IR-5	0.8	0	0.8
1	TC68547-2	500ml	1	МЗВ	N/P	Note #2 - Preservative check not applicable.	IR-5	0.8	0	0.8
1	TC68547-2	500ml	2	МЗВ	N/P	Note #2 - Preservative check not applicable.	IR-5	0.8	0	0.8
1	TC68547-2	500ml	3	МЗВ	HNO3	pH < 2	IR-5	0.8	0	0.8
1	TC68547-2	500ml	4	МЗВ	HNO3	pH < 2	IR-5	0.8	0	0.8
1	TC68547-3	500ml	1	МЗВ	N/P	Note #2 - Preservative check not applicable.	IR-5	0.8	0	0.8
1	TC68547-3	500ml	2	МЗВ	N/P	Note #2 - Preservative check not applicable.	IR-5	0.8	0	0.8
1	TC68547-3	500ml	3	МЗВ	HNO3	pH < 2	IR-5	0.8	0	0.8
1	TC68547-3	500ml	4	МЗВ	HNO3	pH < 2	IR-5	0.8	0	0.8

TC68547: Chain of Custody

Page 3 of 3

Appendix A Laboratory Data Package Cover Page TC68547 This data package consists of

	This signa	ture page, the laboratory review check Field chain-of-custody documentatio	klist, and the following reportable data:	
	R2	Sample identification cross-reference		
Ū	R3	•	for each environmental sample that includes:	
•		a)	Items consistent with NELAC 5.13 or ISO/IEO	C 17025 Section 5.10
		b)	dilution factors.	
		c)	preparation methods,	
		d)	cleanup methods, and	
		e)	if required for the project, tentatively identified	d compounds (TICs).
₽	R4	Surrogate recovery data including:		. , ,
		a)	Calculated recovery (%R), and	
		b)	The laboratory's surrogate QC limits.	
₽	R5	Test reports/summary forms for blan	k samples;	
	R6	Test reports/summary forms for labo	ratory control samples (LCSs) including:	
		a)	LCS spiking amounts,	
		b)	Calculated %R for each analyte, and	
		c)	The laboratory's LCS QC limits.	
	R7	Test reports for project matrix spike/r	matrix spike duplicates (MS/MSDs) including:	
		a)	Samples associated with the MS/MSD clearly	y identified,
		b)	MS/MSD spiking amounts,	
		c)	Concentration of each MS/MSD analyte mea	sured in the parent and
		d)	Calculated %Rs and relative percent differen	ces (RPDs), and
		e)	The laboratory's MS/MSD QC limits	
	R8	Laboratory analytical duplicate (if ap	plicable) recovery and precision:	
		a)	The amount of analyte measured in the dupli	cate,
		b)	The calculated RPD, and	
		c)	The laboratory's QC limits for analytical dupli	icates.
Ģ	R9	List of method quantitation limits (MC	QLs) and detectability check sample results for	each analyte for each
	R10	Other problems or anomalies.		
			' item in Laboratory Review Checklist and for editation under the Texas Laboratory Accreditation	
Texas Lab the Except requirement affirm to the	oratory Accion Report. onto the mage of t	reditation Program for all the methods This data package has been reviewed ethods used, except where noted by t y knowledge, all problems/anomalies,	s laboratory data package. This laboratory is 1, analytes, and matrices reported in this data pd by the laboratory and is complete and techniche laboratory in the attached exception reports observed by the laboratory as having the pote atory Review Checklist, and no information or	ackage except as noted in cally compliant with the . By my signature below, I ntial to affect the quality of
,	applicable:	This laboratory meets an exception u	under 30 TAC&25.6 and was last inspection by	1
[]		noted in the Exception Reports herei	011. Any findings affecting the data in this lab- in. The official signing the cover page of the re- data package and is by signature affirming th	port in which these data are
QA Manag	<u>ger</u>			
Name (Pri	nted)	Signature	Official Title (printed)	Date
Richard R	odriguez	Things	Laboratory Director	6/23/2015

	LABORATORY REVIEW CHECKLIST: REPORTABLE DATA									
Laboratory	Name:	Accutest Gulf Coast	LRC Date:	6/23/2015						
Project Na	me:	7020112C079 / Stewart Creek	Laboratory Project Number:	TC	6854	17				
				GP32	2525	, MP2	26096	δ,		
Reviewer		Anita Patel	Prep Batch Number(s):	MP2						
#1	A ²	DESCRIPTION		YES	NO	NA³	NR⁴	ER # ⁵		
R1	OI	CHAIN-OF-CUSTODY (C-O-C):								
			andard conditions of sample acceptability	X						
		upon receipt?		- V						
		·	onditions described in an exception report?	X						
R2	OI	Sample and quality control (QC) id		- V						
		· · · · · · · · · · · · · · · · · · ·	s-referenced to the laboratory ID numbers?	X						
		· · · · · · · · · · · · · · · · · · ·	referenced to the corresponding QC data?	X						
R3	OI	Test reports								
		Were samples prepared and analyze		X						
		Other than those results <mql, standards?<="" th="" were=""><th>e all other raw values bracketed by calibration</th><th>X</th><th></th><th></th><th></th><th></th></mql,>	e all other raw values bracketed by calibration	X						
		Were calculations checked by a peer	r or supervisor?	Х						
		Were all analyte identifications check	ked by a peer or supervisor?	Х						
		Were sample detection limits reporte	d for all analytes not detected?	Х						
		Were all results for soil and sedimen	t samples reported on a dry weight basis?			Χ				
		Were % moisture (or solids) reported				Χ				
			platile analysis extracted with methanol per							
		SW846 Method 5035?				Х				
		If required for the project, are TIC's re	eported?			Χ				
R4	0	Surrogate recovery data								
		Were surrogates added prior to extra				Χ				
			all samples within the laboratory QC limits?			Χ				
R5	OI	Test reports/summary forms for b								
		Were appropriate type(s) of blanks a	·	X						
		Were blanks analyzed at the appropri		X						
		į	he entire analytical process, including	X						
		preparation and, if applicable, cleanu	ıp procedures?							
		Were blank concentrations <mql?< th=""><th></th><th>X</th><th></th><th></th><th></th><th></th></mql?<>		X						
R6	OI	Laboratory control samples (LCS)								
		Were all COCs included in the LCS?		X						
		_	tire analytical procedure, including prep and	Х						
		cleanup steps?	zueneu?	- V						
		Were LCSs analyzed at required free		X						
			%Rs within the laboratory QC limits? data document the laboratory's capability to	X						
		detect the COCs at the MDL used to		X						
		Was the LCSD RPD within QC limits		<u> </u>		Х				
R7	OI	Matrix spike (MS) and matrix spike								
- 111	<u> </u>		nalytes included in the MS and MSD?	Х	l					
		Were MS/MSD analyzed at the appre		X						
		Were MS (and MSD, if applicable) %	<u> </u>	X						
		Were the MS/MSD RPDs within labor		X						
R8	OI	Analytical duplicate data	,							
		Were appropriate analytical duplicate	es analyzed for each matrix?	Х	1					
		Were analytical duplicates analyzed		X						
			ations within the laboratory QC limits?	X						
R9	OI	Method quantitation limits (MQLs)								
	1		te included in the laboratory data package?	Х						
		Do the MQLs correspond to the cond	entration of the lowest non-zero calibration	Х						
		Are unadjusted MQLs and DCSs inc	luded in the laboratory data package?		Χ			2		
R10	OI	Other problems/anomalies								
			pecial conditions noted in this LRC and ER?	Х						
		Was applicable and available techno	logy used to lower the SDL to minimize the	Х						
			under the Texas Laboratory Accreditation							
		Program for the analytes, matrices, a	and methods associated with this laboratory	X				3		
		data package?								

Laboratory Name: Accutest Gulf Coast LRC Date:			6/2	23/20	15			
Project Na	me:	7020112C079 / Stewart Creek	Laboratory Project Number:	TC	6854	47		
Reviewer	Name:	Anita Patel	Prep Batch Number(s):	GP3		, MP:	2609	6,
#1	A ²	DESCRIPTION	Frep Batch Number(s).				IND ⁴	ER#
 S1	OI	Initial calibration (ICAL)		ILS	INO	INA	INIX	LIX #
- 31	01	` '	ve response factors for each analyte within QC					
		limits?	re response factors for each analyte within QO	Х				
		Were percent RSDs or correlation c	oefficient criteria met?	Х				
			nmended in the method used for all analytes?	X				
			the lowest and highest standard used to					
		calculate the curve?		X				
		Are ICAL data available for all instru	ments used?	Х				
		Has the initial calibration curve beer	verified using an appropriate second source	\ \ \				
		standard?	0 11 1	X				
S2	OI	Initial and continuing calibration	verification (ICCV AND CCV) and continuing					
		Was the CCV analyzed at the method		Х	1	1	Π	
		Were percent differences for each a	nalyte within the method-required QC limits?	Х				
		Was the ICAL curve verified for each	n analyte?	Х				
		Was the absolute value of the analy	te concentration in the inorganic CCB <mdl?< td=""><td></td><td>Х</td><td></td><td></td><td>5</td></mdl?<>		Х			5
S3	0	Mass spectral tuning						
		Was the appropriate compound for	the method used for tuning?			X		
		Were ion abundance data within the	e method-required QC limits?			Х		
S4	0	Internal standards (IS)						
			mes within the method-required QC limits?			X		
S5	OI	Raw data (NELAC Section 5.5.10)						
		` '	omatograms, spectral data) reviewed by an	l x				
		analyst?						
			ntegrations flagged on the raw data?	Х			<u> </u>	
S6	0	Dual column confirmation				1		
		Did dual column confirmation result				Х		
S7	0	Tentatively identified compounds			_			
		checks?	ass spectra and TIC data subject to appropriate			Х		
S8	<u> </u>	Interference Check Sample (ICS)	raculte					
	<u> </u>	Were percent recoveries within met		Х				
S9	<u> </u>		pikes, and method of standard additions	├ ^				
	<u>'</u>		s, and the linearity within the QC limits					
		specified in the method?	3, and the initiality within the QO initia		Х			4
S10	OI	Method detection limit (MDL) stud	lies					
	<u> </u>	Was a MDL study performed for each		Х	Ī	l	<u> </u>	
		Is the MDL either adjusted or suppo	·	X				
S11	OI	Proficiency test reports	ned by the analysis of boos.					
			cceptable on the applicable proficiency tests or		Π			
		evaluation studies?	,,	X				
S12	OI	Standards documentation						
		Are all standards used in the analys	es NIST-traceable or obtained from other	Х				
		appropriate source?		^				
S13	OI	Compound/analyte identification	procedures					
		Are the procedures for compound/a	nalyte identification documented?	Х				
S14	OI	Demonstration of analyst compet	ency (DOC)					
		Was DOC conducted consistent wit	h NELAC Chapter 5?	Х				
		Is documentation of the analyst's co		Х				
S15	OI	Verification/validation documenta	tion for methods (NELAC Chapter 5)					
		Are all the methods used to generate	e the data documentated, verified, and	X				
		validated, where applicable?						
S16	OI	Laboratory standard operating pr						
		Are laboratory SOPs current and on	file for each method performed?	Х				

	LABOR	RATORY REVIEW CHEC	KLIST (continued): Ex	xception Reports								
Laboratory	/ Name:	Accutest Gulf Coast	LRC Date:	6/23/2015								
Project Na	me:	7020112C079 / Stewart Creek	Laboratory Project Number:	TC68547								
Reviewer	Name:	Anita Patel	Prep Batch Number(s):	GP32525, MP26096, MP26097								
ER# ¹	Description											
1 2	blank. The	ing purposes, the MQL is defined in the SDL is defined in the report as the M ing purposes, the method blank represent the laboratory data package.	DL. ,	·								
3	1	atory is NELAC-accredited under the Tassociated with this laboratory data page	,									
4	All anoma	lies are discussed in the case narrative	е									
5	See Metal	s CCB MDL check section of report.										

¹ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked on

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries
- Metals CCB MDL Check

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: TC68547 Account: APEXTTXD - APEX TITAN, Inc. Project: 7020112C079 / Stewart Creek

QC Batch ID: MP26096 Matrix Type: AQUEOUS Methods: SW846 6020A

Units: ug/l

Prep Date:

06/15/15

				MB	
Metal	RL	IDL	MDL	raw	final
Aluminum	100	25	18		
Antimony	4.0	.048	.72	-0.79	<4.0
Arsenic	4.0	.12	.54	-0.10	<4.0
Barium	2.0	.026	.19	-0.66	<2.0
Beryllium	2.0	.04	.26	-0.37	<2.0
Boron	10	.73	.78		
Cadmium	2.0	.058	.27	-0.13	<2.0
Calcium	500	24	19	-15	<500
Chromium	2.0	.062	.13	-0.065	<2.0
Cobalt	4.0	.038	.11		
Copper	4.0	.09	.11		
Iron	100	32	14		
Lead	2.0	.05	.48	-0.31	<2.0
Lithium	2.0	. 7	.66		
Magnesium	500	24	14	-7.1	<500
Manganese	2.0	.052	. 45		
Molybdenum	2.0	.71	.56		
Nickel	4.0	.054	.1	-0.18	<4.0
Potassium	500	27	20		
Selenium	4.0	.98	.54	0.094	<4.0
Silver	2.0	.036	. 2	-0.19	<2.0
Sodium	500	24	21		
Strontium	10	.068	.25		
Thallium	2.0	.1	.1		
Tin	10	.096	.35		
Titanium	10	.58	.56		
Vanadium	2.0	.068	.43		
Zinc	4.0	.084	.82		

Associated samples MP26096: TC68547-1, TC68547-2, TC68547-3, TC68547-1F, TC68547-2F, TC68547-3F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\dot{\ }$

(anr) Analyte not requested

Login Number: TC68547 Account: APEXTTXD - APEX TITAN, Inc. Project: 7020112C079 / Stewart Creek

QC Batch ID: MP26096 Methods: SW846 6020A Matrix Type: AQUEOUS Units: ug/l

06/15/15 Prep Date:

Metal	TC68547-1 Original MS		Spikelot MPTW11 % Rec		QC Limits
Aluminum					
Antimony	0.0	443	400	110.8	75-125
Arsenic	1.0	407	400	101.5	75-125
Barium	94.9	532	400	109.3	75-125
Beryllium	0.0	381	400	95.3	75-125
Boron					
Cadmium	0.0	403	400	100.8	75-125
Calcium	143000	195000	50000	104.0	75-125
Chromium	0.36	442	400	110.4	75-125
Cobalt					
Copper					
Iron					
Lead	2.0	395	400	98.3	75-125
Lithium					
Magnesium	5790	60700	50000	109.8	75-125
Manganese					
Molybdenum					
Nickel	1.4	398	400	99.2	75-125
Potassium					
Selenium	1.1	346	400	86.2	75-125
Silver	0.0	403	400	100.8	75-125
Sodium					
Strontium					
Thallium					
Tin					
Titanium					
Vanadium					
Zinc					

Associated samples MP26096: TC68547-1, TC68547-2, TC68547-3, TC68547-1F, TC68547-2F, TC68547-3F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

Login Number: TC68547 Account: APEXTTXD - APEX TITAN, Inc. Project: 7020112C079 / Stewart Creek

QC Batch ID: MP26096 Methods: SW846 6020A Matrix Type: AQUEOUS Units: ug/l

Prep Date:

06/15/15

Metal	TC68547-1 Original MSD		Spikelot MPTWll % Rec		MSD RPD	QC Limit
Aluminum						
Antimony	0.0	458	400	114.5	3.3	20
Arsenic	1.0	422	400	105.3	3.6	20
Barium	94.9	552	400	114.3	3.7	20
Beryllium	0.0	394	400	98.5	3.4	20
Boron						
Cadmium	0.0	406	400	101.5	0.7	20
Calcium	143000	198000	50000	110.0	1.5	20
Chromium	0.36	449	400	112.2	1.6	20
Cobalt						
Copper						
Iron						
Lead	2.0	400	400	99.5	1.3	20
Lithium						
Magnesium	5790	61300	50000	111.0	1.0	20
Manganese						
Molybdenum						
Nickel	1.4	401	400	99.9	0.8	20
Potassium						
Selenium	1.1	360	400	89.7	4.0	20
Silver	0.0	406	400	101.5	0.7	20
Sodium						
Strontium						
Thallium						
Tin						
Titanium						
Vanadium						
Zinc						

Associated samples MP26096: TC68547-1, TC68547-2, TC68547-3, TC68547-1F, TC68547-2F, TC68547-3F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: TC68547 Account: APEXTTXD - APEX TITAN, Inc. Project: 7020112C079 / Stewart Creek

QC Batch ID: MP26096 Matrix Type: AQUEOUS Methods: SW846 6020A

Units: ug/l

Prep Date:

06/15/15

Prep Date:			00/15/1	
Metal	BSP Result	Spikelot MPTW11	% Rec	QC Limits
Aluminum				
Antimony	433	400	108.3	80-120
Arsenic	402	400	100.5	80-120
Barium	436	400	109.0	80-120
Beryllium	393	400	98.3	80-120
Boron				
Cadmium	396	400	99.0	80-120
Calcium	50900	50000	101.8	80-120
Chromium	416	400	104.0	80-120
Cobalt				
Copper				
Iron				
Lead	394	400	98.5	80-120
Lithium				
Magnesium	52600	50000	105.2	80-120
Manganese				
Molybdenum				
Nickel	406	400	101.5	80-120
Potassium				
Selenium	366	400	91.5	80-120
Silver	412	400	103.0	80-120
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc				

Associated samples MP26096: TC68547-1, TC68547-2, TC68547-3, TC68547-1F, TC68547-2F, TC68547-3F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\dot{\ }$

(anr) Analyte not requested

TC68547

SERIAL DILUTION RESULTS SUMMARY

Login Number: TC68547 Account: APEXTTXD - APEX TITAN, Inc. Project: 7020112C079 / Stewart Creek

QC Batch ID: MP26096 Methods: SW846 6020A Matrix Type: AQUEOUS Units: ug/l

06/15/15 Prep Date:

Metal	TC68547- Original	1 SDL 2:10	%DIF	QC Limits
Aluminum				
Antimony	0.00	0.00	NC	0-10
Arsenic	1.02	0.00	100.0(a)	0-10
Barium	94.9	82.3	13.3*(b)	0-10
Beryllium	0.00	0.00	NC	0-10
Boron				
Cadmium	0.00	0.00	NC	0-10
Calcium	143000	131000	8.4	0-10
Chromium	0.364	0.00	100.0(a)	0-10
Cobalt				
Copper				
Iron				
Lead	1.97	0.420	78.6 (a)	0-10
Lithium				
Magnesium	5790	5100	12.0*(b)	0-10
Manganese				
Molybdenum				
Nickel	1.35	3.60	165.8(a)	0-10
Potassium				
Selenium	1.15	0.00	100.0(a)	0-10
Silver	0.00	0.00	NC	0-10
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc				

Associated samples MP26096: TC68547-1, TC68547-2, TC68547-3, TC68547-1F, TC68547-2F, TC68547-3F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(anr) Analyte not requested

(a) Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

(b) Serial dilution indicates possible matrix interference.

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: TC68547 Account: APEXTTXD - APEX TITAN, Inc. Project: 7020112C079 / Stewart Creek

QC Batch ID: MP26097 Methods: SW846 7470A Matrix Type: AQUEOUS Units: ug/l

Prep Date: 06/15/15

Associated samples MP26097: TC68547-1, TC68547-2, TC68547-3, TC68547-1F, TC68547-2F, TC68547-3F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: TC68547 Account: APEXTTXD - APEX TITAN, Inc. Project: 7020112C079 / Stewart Creek

QC Batch ID: MP26097 Methods: SW846 7470A Matrix Type: AQUEOUS Units: ug/l

06/15/15 Prep Date:

Metal	TC6854 Origin		Spike HGTXA	lot Q40 % Rec	QC Limits	
Mercury	0.0	3.1	3	103.3	75-125	

Associated samples MP26097: TC68547-1, TC68547-2, TC68547-3, TC68547-1F, TC68547-2F, TC68547-3F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\hfill \Box$

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: TC68547 Account: APEXTTXD - APEX TITAN, Inc. Project: 7020112C079 / Stewart Creek

QC Batch ID: MP26097 Methods: SW846 7470A Matrix Type: AQUEOUS Units: ug/l

Prep Date:

06/15/15

Metal	TC6854 Origina		Spikel HGTXAÇ	ot 240 % Rec	MSD RPD	QC Limit	
Mercury	0.0	2.8	3	93.3	10.2	20	

Associated samples MP26097: TC68547-1, TC68547-2, TC68547-3, TC68547-1F, TC68547-2F, TC68547-3F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\hfill \hfill$

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: TC68547 Account: APEXTTXD - APEX TITAN, Inc. Project: 7020112C079 / Stewart Creek

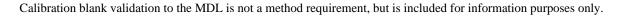
QC Batch ID: MP26097 Methods: SW846 7470A Matrix Type: AQUEOUS Units: ug/1

Prep Date: 06/15/15

Metal	BSP Result	Spikelot HGTXAQ40		QC Limits
Mercury	3.0	3	100.0	80-120

Associated samples MP26097: TC68547-1, TC68547-2, TC68547-3, TC68547-1F, TC68547-2F, TC68547-3F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested


Metals CCB MDL Check

Job Number: TC68547

Account: APEXTTXD APEX TITAN, Inc. Project: 7020112C079 / Stewart Creek

The following elements are braketed by CCB's at or above the MDL.

Sample	Element	Run ID	Time	MDL	Units	ССВ В	efore	CCB A	fter
TC68547-1	Mercury	MA11098	13:59	.050	ug/l	CCB1	-0.069	CCB2	-0.063
TC68547-2	Mercury	MA11098	14:27	.050	ug/l	CCB2	-0.063	CCB3	-0.061
TC68547-3	Mercury	MA11098	14:29	.050	ug/l	CCB2	-0.063	CCB3	-0.061
TC68547-1F	Mercury	MA11098	14:30	.050	ug/l	CCB2	-0.063	CCB3	-0.061
TC68547-2F	Mercury	MA11098	14:32	.050	ug/l	CCB2	-0.063	CCB3	-0.061
TC68547-3F	Mercury	MA11098	14:34	.050	ug/l	CCB2	-0.063	CCB3	-0.061
TC68547-1	Antimony	MA11105	19:36	.36	ug/l	CCB1	-0.44	CCB2	-0.41
TC68547-2	Antimony	MA11105	20:39	.36	ug/l	CCB2	-0.41	CCB3	-0.44
TC68547-3	Antimony	MA11105	20:52	.36	ug/l	CCB2	-0.41	CCB3	-0.44
TC68547-1F	Antimony	MA11105	21:17	.36	ug/l	CCB3	-0.44	CCB4	-0.45
TC68547-2F	Antimony	MA11105	21:29	.36	ug/l	CCB3	-0.44	CCB4	-0.45
TC68547-3F	Antimony	MA11105	21:42	.36	ug/l	CCB3	-0.44	CCB4	-0.45
TC68547-1	Barium	MA11105	19:36	.093	ug/l	CCB1	-0.34	CCB2	-0.34
TC68547-2	Barium	MA11105	20:39	.093	ug/l	CCB2	-0.34	CCB3	-0.34
TC68547-3	Barium	MA11105	20:52	.093	ug/l	CCB2	-0.34	CCB3	-0.34
TC68547-1F	Barium	MA11105	21:17	.093	ug/l	CCB3	-0.34	CCB4	-0.34
TC68547-2F	Barium	MA11105	21:29	.093	ug/l	CCB3	-0.34	CCB4	-0.34
TC68547-3F	Barium	MA11105	21:42	.093	ug/l	CCB3	-0.34	CCB4	-0.34
TC68547-1	Beryllium	MA11105	19:36	.13	ug/l	CCB1	-0.18	CCB2	-0.18
TC68547-2	Beryllium	MA11105	20:39	.13	ug/l	CCB2	-0.18	CCB3	-0.18
TC68547-3	Beryllium	MA11105	20:52	.13	ug/l	CCB2	-0.18	CCB3	-0.18
TC68547-1F	Beryllium	MA11105	21:17	.13	ug/l	CCB3	-0.18	CCB4	-0.18
TC68547-2F	Beryllium	MA11105	21:29	.13	ug/l	CCB3	-0.18	CCB4	-0.18
TC68547-3F	Beryllium	MA11105	21:42	.13	ug/l	CCB3	-0.18	CCB4	-0.18
TC68547-1	Calcium	MA11105	19:36	9.3	ug/l	CCB1	-20	CCB2	-21
TC68547-2	Calcium	MA11105	20:39	9.3	ug/l	CCB2	-21	CCB3	-21
TC68547-3	Calcium	MA11105	20:52	9.3	ug/l	CCB2	-21	CCB3	-21
TC68547-1F	Calcium	MA11105	21:17	9.3	ug/l	CCB3	-21	CCB4	-22
TC68547-2F	Calcium	MA11105	21:29	9.3	ug/l	CCB3	-21	CCB4	-22
TC68547-3F	Calcium	MA11105	21:42	9.3	ug/l	CCB3	-21	CCB4	-22
TC68547-1	Nickel	MA11105	19:36	.050	ug/l	CCB1	-0.10	CCB2	-0.098
TC68547-2	Nickel	MA11105	20:39	.050	ug/l	CCB2	-0.098	CCB3	-0.10
TC68547-3	Nickel	MA11105	20:52	.050	ug/l	CCB2	-0.098	CCB3	-0.10
TC68547-1F	Nickel	MA11105		.050	ug/l	CCB3	-0.10	CCB4	-0.10
TC68547-2F	Nickel	MA11105	21:29	.050	ug/l	CCB3	-0.10	CCB4	-0.10
TC68547-3F	Nickel	MA11105	21:42	.050	ug/l	CCB3	-0.10	CCB4	-0.10

General Chemistry

QC Data Summaries

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries
- General Chemistry CCB MDL Check

METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TC68547 Account: APEXTTXD - APEX TITAN, Inc. Project: 7020112C079 / Stewart Creek

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Chloride	GP32525/GN66488	0.50	0.0	mg/l	10	10.1	101.0	90-110%
Sulfate	GP32525/GN66488	0.50	0.0	mg/l	10	10.8	108.0	90-110%

Associated Samples: Batch GP32525: TC68547-1, TC68547-2, TC68547-3 (*) Outside of QC limits

DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TC68547 Account: APEXTTXD - APEX TITAN, Inc. Project: 7020112C079 / Stewart Creek

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits
Chloride	GP32525/GN66488	TC68707-10	mg/l	51.8	51.9	0.2	0-20%
Sulfate	GP32525/GN66488	TC68707-10	mg/l	33.6	33.5		0-20%

Associated Samples: Batch GP32525: TC68547-1, TC68547-2, TC68547-3 (*) Outside of QC limits

MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TC68547 Account: APEXTTXD - APEX TITAN, Inc. Project: 7020112C079 / Stewart Creek

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Chloride	GP32525/GN66488	TC68707-10	mg/l	51.8	50	103	102.4	80-120%
Sulfate	GP32525/GN66488	TC68707-10	mg/l	33.6	50	83.4	99.6	80-120%

Associated Samples: Batch GP32525: TC68547-1, TC68547-2, TC68547-3 (*) Outside of QC limits

- (N) Matrix Spike Rec. outside of QC limits

7.4

Page 1 of 1

7

General Chemistry CCB MDL Check

Job Number: TC68547

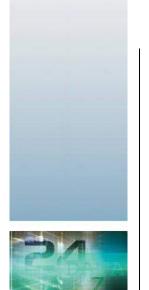
Account: APEXTTXD APEX TITAN, Inc. Project: 7020112C079 / Stewart Creek

The following parameters are braketed by CCB's at or above the MDL.

Sample	Parameter	Run ID	Time	\mathbf{MDL}	Units	CCB Before	CCB After	
-								

No CCB's found at or above MDL.

Solid Sample Analytical Results


Accutest Laboratories Report Dated June 23, 2015

Accutest Job Number: TC68548

06/23/15

Technical Report for

APEX TITAN, Inc.

7020112C079 / Stewart Creek

7020112C079

Accutest Job Number: TC68548

Sampling Date: 06/08/15

Report to:

APEX TITAN, Inc. 2351 W. Northwest Hwy Suite 3321 Dallas, TX 75220 JMinter@apexcos.com

ATTN: Jason Minter

Total number of pages in report: 47

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Laboratory Director

Richard Rodriguez

Client Service contact: Sylvia Garza 713-271-4700

Certifications: TX (T104704220-15-21, 1M104704220-15-2) AR (14-016-0) AZ (AZ0769) FL (E87628) KS (E-10366) LA (85695/04004) NJ (TX010) OK (2014-172) VA (7654)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

1 of 47
ACCUTEST

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	
Section 3: Summary of Hits	6
Section 4: Sample Results	8
4.1: TC68548-1: 2015-COF-SOLID-01 0-0.25	9
4.2: TC68548-1A: 2015-COF-SOLID-01 0-0.25	11
4.3: TC68548-2: 2015-COF-SOLID-02 0-0.25	12
4.4: TC68548-2A: 2015-COF-SOLID-02 0-0.25	14
Section 5: Misc. Forms	15
5.1: Chain of Custody	16
5.2: LRC Form	19
Section 6: Metals Analysis - QC Data Summaries	23
6.1: Prep QC MP26094: Sb,As,Ba,Be,Cd,Cr,Pb,Ni,Se,Ag	24
6.2: Prep QC MP26101: Hg	29
6.3: Prep QC MP26109: Sb,As,Ba,Be,Cd,Ca,Cr,Pb,Mg,Ni,Se,Ag	33
6.4: Prep QC MP26111: Hg	38
6.5: Metals CCB MDL Check	42
Section 7: General Chemistry - QC Data Summaries	43
7.1: Method Blank and Spike Results Summary	
7.2: Duplicate Results Summary	45
7.3: Matrix Spike Results Summary	46
7.4: General Chemistry CCB MDL Check	47

C

0

Sample Summary

APEX TITAN, Inc.

Job No: TC68548

7020112C079 / Stewart Creek Project No: 7020112C079

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
TC68548-1	06/08/15	19:18	06/10/15	SO	Solid	2015-COF-SOLID-01 0-0.25
TC68548-1A	06/08/15	19:18	06/10/15	SO	Solid	2015-COF-SOLID-01 0-0.25
TC68548-2	06/08/15	20:15	06/10/15	SO	Solid	2015-COF-SOLID-02 0-0.25
TC68548-2A	06/08/15	20:15	06/10/15	SO	Solid	2015-COF-SOLID-02 0-0.25

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: APEX TITAN, Inc. Job No TC68548

Site: 7020112C079 / Stewart Creek Report Date 6/22/2015 4:55:39 PM

2 Samples were collected on 06/08/2015 and received intact at Accutest on 06/10/2015 and properly preserved in 1 cooler at 0.8 Deg C. These Samples received an Accutest job number of TC68548. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Metals By Method SW846 6010B

Matrix LEACHATE Batch ID: MP26094

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) TC68548-1AMS, TC68548-1AMSD, TC68548-1ASDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Cadmium, Chromium are outside control limits for sample MP26094-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).</p>

Metals By Method SW846 6020A

Matrix SO Batch ID: MP26109

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) TC67604-12MSD, TC67604-12MS, TC67604-12SDL were used as the QC samples for metals.
- Matrix Spike Recovery(s) for Lead, Selenium are outside control limits. Spike recovery indicates possible matrix interference or sample non-homogeneity.
- Matrix Spike Duplicate Recovery(s) for Chromium, Lead, Selenium, Antimony are outside control limits. High RPD due to possible sample nonhomogeneity or matrix interference.
- Matrix Spike/Matrix Spike Duplicate Recovery(s) for Calcium, Barium, Arsenic are outside control limits. Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information.
- RPD(s) for MSD for Antimony, Arsenic are outside control limits for sample MP26109-S2. High RPD due to possible sample nonhomogeneity or matrix interference.
- RPD(s) for Serial Dilution for Selenium are outside control limits for sample MP26109-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).</p>
- RPD(s) for Serial Dilution for Arsenic, Beryllium, Cadmium, Chromium, Calcium, Silver are outside control limits for sample MP26109-SD1. Serial dilution indicates possible matrix interference.
- TC68548-2 for Chromium: Elevated reporting limit due to dilution required for matrix interference.
- TC68548-2 for Cadmium: Elevated reporting limit due to dilution required for matrix interference.
- TC68548-2 for Nickel: Elevated reporting limit due to dilution required for matrix interference.

4 of 47

Metals By Method SW846 7470A

Matrix LEACHATE

Batch ID: MP26101

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) TC68548-1AMS, TC68548-1AMSD were used as the QC samples for metals.

Metals By Method SW846 7471A

Matrix SO

Batch ID: MP26111

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) TC68645-1MS, TC68645-1MSD were used as the QC samples for metals.

Wet Chemistry By Method EPA 300

Matrix SO

Batch ID: GP32496

- All samples were prepared within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) TC68635-2DUP, TC68635-2MS were used as the QC samples for Sulfate.
- Matrix Spike Recovery(s) for Sulfate are outside control limits. Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information.

Wet Chemistry By Method SM 2540 G

Matrix SO

Batch ID: GN66305

Sample(s) TC68548-1DUP were used as the QC samples for Solids, Percent.

Wet Chemistry By Method SW846 9045C

Matrix SO

Batch ID: GN66306

- Sample(s) TC68548-1DUP were used as the QC samples for pH.
- TC68548-2 for pH: temp. 22.1 c
- TC68548-1 for pH: temp. 22.0 c

Accutest Laboratories Gulf Coast (ALGC) certifies that this report meets the project requirements for analytical data produced for the samples as received at ALGC and as stated on the COC. ALGC certifies that the data meets the Data QualityObjectives for precision, accuracy and completeness as specified in the ALGC Quality Manual except as noted above. This report is to be used in its entirety. ALGC is not responsible for any assumptions of data quality if partial data packages are used

Summary of Hits Job Number: TC68548

Account: APEX TITAN, Inc.

Project: 7020112C079 / Stewart Creek

Collected: 06/08/15

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	MQL	SDL	Units	Method
TC68548-1	2015-COF-SOLID	0-01 0-0.25				
Antimony Arsenic Barium Cadmium Calcium Chromium Lead Magnesium		0.085 J 5.0 224 1.7 342000 0.54 1030 2130	0.89 0.89 0.44 0.44 1100 0.44 1.8	0.032 0.033 0.14 0.038 49 0.068 0.25 4.5	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	SW846 6020A SW846 6020A SW846 6020A SW846 6020A SW846 6020A SW846 6020A SW846 6020A
Nickel Selenium Sulfate pH ^a		2.6 0.66 J 75.2 8.70	0.89 0.89 4.3	0.058 0.11 2.2	mg/kg mg/kg mg/kg su	SW846 6020A SW846 6020A EPA 300 SW846 9045C
TC68548-1A	2015-COF-SOLID	0-01 0-0.25				
Arsenic Barium Cadmium Chromium Lead Nickel		0.0074 J 0.48 J 0.0070 J 0.0049 J 0.14 0.020 J	0.050 5.0 0.020 0.050 0.025 0.20	0.0050 0.017 0.00045 0.0014 0.0089 0.0070	mg/l mg/l mg/l mg/l mg/l	SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B
TC68548-2	2015-COF-SOLID	0-02 0-0.25				
Antimony Arsenic Barium Cadmium b Calcium Chromium b Lead Magnesium Nickel b Selenium Sulfate pH c		0.12 J 10.1 226 0.23 J 335000 0.36 J 870 3780 2.2 1.1 311 10.03	0.93 0.93 0.47 0.93 1200 0.93 0.93 230 1.9 0.93 4.6	0.034 0.035 0.15 0.081 52 0.14 0.13 9.6 0.12 0.11 2.3	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg su	SW846 6020A SW846 9045C
TC68548-2A	2015-COF-SOLID	0-02 0-0.25				
Barium Cadmium Lead Nickel		0.46 J 0.0011 J 0.23 0.013 J	5.0 0.020 0.025 0.20	0.017 0.00045 0.0089 0.0070	mg/l mg/l mg/l mg/l	SW846 6010B SW846 6010B SW846 6010B SW846 6010B

Page 2 of 2

.50 2 01 2

Summary of Hits Job Number: TC68548

Account: APEX TITAN, Inc.

Project: 7020112C079 / Stewart Creek

Collected: 06/08/15

Lab Sample ID Client Sample ID Result/
Analyte Qual MQL SDL Units Method

(a) temp. 22.0 c

(b) Elevated reporting limit due to dilution required for matrix interference.

(c) temp. 22.1 c

W

Sample Results	
Report of Analysis	

4

Report of Analysis

Client Sample ID: 2015-COF-SOLID-01 0-0.25

 Lab Sample ID:
 TC68548-1
 Date Sampled:
 06/08/15

 Matrix:
 SO - Solid
 Date Received:
 06/10/15

 Percent Solids:
 57.8

Project: 7020112C079 / Stewart Creek

Metals Analysis

Analyte	Result	MQL	SDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Antimony	0.085 J	0.89	0.032	mg/kg	5	06/17/15	06/18/15 EG	SW846 6020A ²	SW846 3050B ⁴
Arsenic	5.0	0.89	0.033	mg/kg	5	06/17/15	06/18/15 EG	SW846 6020A ²	SW846 3050B ⁴
Barium	224	0.44	0.14	mg/kg	5	06/17/15	06/18/15 EG	SW846 6020A ²	SW846 3050B ⁴
Beryllium	0.024 U	0.44	0.024	mg/kg	5	06/17/15	06/18/15 EG	SW846 6020A ²	SW846 3050B ⁴
Cadmium	1.7	0.44	0.038	mg/kg	5	06/17/15	06/18/15 EG	SW846 6020A ²	SW846 3050B ⁴
Calcium	342000	1100	49	mg/kg	50	06/17/15	06/19/15 EG	SW846 6020A ³	SW846 3050B ⁴
Chromium	0.54	0.44	0.068	mg/kg	5	06/17/15	06/18/15 EG	SW846 6020A ²	SW846 3050B ⁴
Lead	1030	1.8	0.25	mg/kg	20	06/17/15	06/19/15 EG	SW846 6020A ³	SW846 3050B ⁴
Magnesium	2130	110	4.5	mg/kg	5	06/17/15	06/18/15 EG	SW846 6020A ²	SW846 3050B ⁴
Mercury	0.021 U	0.053	0.021	mg/kg	1	06/17/15	06/17/15 CC	SW846 7471A ¹	SW846 7471A ⁵
Nickel	2.6	0.89	0.058	mg/kg	5	06/17/15	06/18/15 EG	SW846 6020A ²	SW846 3050B ⁴
Selenium	0.66 J	0.89	0.11	mg/kg	5	06/17/15	06/18/15 EG	SW846 6020A ²	SW846 3050B ⁴
Silver	0.031 U	0.44	0.031	mg/kg	5	06/17/15	06/18/15 EG	SW846 6020A ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA11106
(2) Instrument QC Batch: MA11114
(3) Instrument QC Batch: MA11120
(4) Prep QC Batch: MP26109
(5) Prep QC Batch: MP26111

MQL = Method Quantitation Limit SDL = Sample Detection Limit U = Indicates a result < SDL J = Indicates a result >= SDL but < MQL

4

Report of Analysis

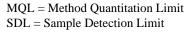
Client Sample ID: 2015-COF-SOLID-01 0-0.25

 Lab Sample ID:
 TC68548-1
 Date Sampled:
 06/08/15

 Matrix:
 SO - Solid
 Date Received:
 06/10/15

 Percent Solids:
 57.8

Project: 7020112C079 / Stewart Creek


General Chemistry

Analyte	Result	MQL	SDL	Units	DF	Analyzed	By	Method
Solids, Percent Sulfate pH ^a	57.8 75.2 8.70	4.3	2.2	% mg/kg su	1 1 1	06/12/15 06/17/15 12:16 06/12/15 16:15	ES	SM 2540 G EPA 300 SW846 9045C

(a) temp. 22.0 c

U = Indicates a result < SDL

J = Indicates a result >= SDL but < MQL

Report of Analysis

Client Sample ID: 2015-COF-SOLID-01 0-0.25

Lab Sample ID: TC68548-1A **Date Sampled:** 06/08/15 Matrix: SO - Solid **Date Received:** 06/10/15 Percent Solids: 57.8

7020112C079 / Stewart Creek Project:

Metals Analysis, TCLP Leachate SW846 1311

Analyte	Result	HW#	MCL	MQL	SDL	Units	DF	Prep	Analyzed By	Method
Antimony	0.0051 U			0.025	0.0051	mg/l	5	06/15/15	06/15/15 NS	SW846 6010B ²
Arsenic	0.0074 J	D004	5.0	0.050	0.0050	mg/l	5	06/15/15	06/15/15 NS	SW846 6010B ²
Barium	0.48 J	D005	100	5.0	0.017	mg/l	5	06/15/15	06/15/15 NS	SW846 6010B ²
Beryllium	0.00080 U			0.025	0.00080	mg/l	5	06/15/15	06/15/15 NS	SW846 6010B ²
Cadmium	0.0070 J	D006	1.0	0.020	0.00045	mg/l	5	06/15/15	06/15/15 NS	SW846 6010B ²
Chromium	0.0049 J	D007	5.0	0.050	0.0014	mg/l	5	06/15/15	06/15/15 NS	SW846 6010B ²
Lead	0.14	D008	5.0	0.025	0.0089	mg/l	5	06/15/15	06/15/15 NS	SW846 6010B ²
Mercury	0.000050 U	D009	0.20	0.00020	0.000050) mg/l	1	06/15/15	06/15/15 CC	SW846 7470A ¹
Nickel	0.020 J			0.20	0.0070	mg/l	5	06/15/15	06/15/15 NS	SW846 6010B ²
Selenium	0.0049 U	D010	1.0	0.050	0.0049	mg/l	5	06/15/15	06/15/15 NS	SW846 6010B ²
Silver	0.0012 U	D011	5.0	0.050	0.0012	mg/l	5	06/15/15	06/15/15 NS	SW846 6010B ²

(1) Instrument QC Batch: MA11098 (2) Instrument QC Batch: MA11100 (3) Prep QC Batch: MP26094 (4) Prep QC Batch: MP26101

MQL = Method Quantitation Limit SDL = Sample Detection Limit MCL = Maximum Contamination Level (40 CFR 261 6/96)

U = Indicates a result < SDL J = Indicates a result >= SDL but < MQL

Report of Analysis

Client Sample ID: 2015-COF-SOLID-02 0-0.25

 Lab Sample ID:
 TC68548-2
 Date Sampled:
 06/08/15

 Matrix:
 SO - Solid
 Date Received:
 06/10/15

 Percent Solids:
 54.7

Project: 7020112C079 / Stewart Creek

Metals Analysis

Analyte	Result	MQL	SDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Antimony	0.12 J	0.93	0.034	mg/kg	5	06/17/15	06/18/15 EG	SW846 6020A ²	SW846 3050B ⁴
Arsenic	10.1	0.93	0.035	mg/kg	5	06/17/15	06/18/15 EG	SW846 6020A ²	SW846 3050B ⁴
Barium	226	0.47	0.15	mg/kg	5	06/17/15	06/18/15 EG	SW846 6020A ²	SW846 3050B ⁴
Beryllium	0.025 U	0.47	0.025	mg/kg	5	06/17/15	06/18/15 EG	SW846 6020A ²	SW846 3050B ⁴
Cadmium ^a	0.23 J	0.93	0.081	mg/kg	10	06/17/15	06/18/15 EG	SW846 6020A ²	SW846 3050B ⁴
Calcium	335000	1200	52	mg/kg	50	06/17/15	06/19/15 EG	SW846 6020A ³	SW846 3050B ⁴
Chromium a	0.36 J	0.93	0.14	mg/kg	10	06/17/15	06/18/15 EG	SW846 6020A ²	SW846 3050B ⁴
Lead	870	0.93	0.13	mg/kg	10	06/17/15	06/18/15 EG	SW846 6020A ²	SW846 3050B ⁴
Magnesium	3780	230	9.6	mg/kg	10	06/17/15	06/18/15 EG	SW846 6020A ²	SW846 3050B ⁴
Mercury	0.021 U	0.054	0.021	mg/kg	1	06/17/15	06/17/15 CC	SW846 7471A ¹	SW846 7471A ⁵
Nickel a	2.2	1.9	0.12	mg/kg	10	06/17/15	06/18/15 EG	SW846 6020A ²	SW846 3050B ⁴
Selenium	1.1	0.93	0.11	mg/kg	5	06/17/15	06/18/15 EG	SW846 6020A ²	SW846 3050B ⁴
Silver	0.033 U	0.47	0.033	mg/kg	5	06/17/15	06/18/15 EG	SW846 6020A ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA11106
(2) Instrument QC Batch: MA11114
(3) Instrument QC Batch: MA11120
(4) Prep QC Batch: MP26109
(5) Prep QC Batch: MP26111

(a) Elevated reporting limit due to dilution required for matrix interference.

Report of Analysis

Client Sample ID: 2015-COF-SOLID-02 0-0.25

 Lab Sample ID:
 TC68548-2
 Date Sampled:
 06/08/15

 Matrix:
 SO - Solid
 Date Received:
 06/10/15

 Percent Solids:
 54.7

Project: 7020112C079 / Stewart Creek

General Chemistry

Analyte	Result	MQL	SDL	Units	DF	Analyzed	Ву	Method
Solids, Percent	54.7			%	1	06/12/15	PA	SM 2540 G
Sulfate	311	4.6	2.3	mg/kg	1	06/17/15 12:33	ES	EPA 300
pH ^a	10.03			su	1	06/12/15 16:15	MS	SW846 9045C

(a) temp. 22.1 c

U = Indicates a result < SDL

J = Indicates a result >= SDL but < MQL

Report of Analysis

Client Sample ID: 2015-COF-SOLID-02 0-0.25

Lab Sample ID: TC68548-2A **Date Sampled:** 06/08/15 Matrix: SO - Solid **Date Received:** 06/10/15 Percent Solids: 54.7

7020112C079 / Stewart Creek Project:

Metals Analysis, TCLP Leachate SW846 1311

Analyte	Result	HW#	MCL	MQL	SDL	Units	DF	Prep	Analyzed By	Method
Antimony	0.0051 U			0.025	0.0051	mg/l	5	06/15/15	06/15/15 NS	SW846 6010B ²
Arsenic	0.0050 U	D004	5.0	0.050	0.0050	mg/l	5	06/15/15	06/15/15 NS	SW846 6010B ²
Barium	0.46 J	D005	100	5.0	0.017	mg/l	5	06/15/15	06/15/15 NS	SW846 6010B ²
Beryllium	0.00080 U			0.025	0.00080	mg/l	5	06/15/15	06/15/15 NS	SW846 6010B ²
Cadmium	0.0011 J	D006	1.0	0.020	0.00045	mg/l	5	06/15/15	06/15/15 NS	SW846 6010B ²
Chromium	0.0014 U	D007	5.0	0.050	0.0014	mg/l	5	06/15/15	06/15/15 NS	SW846 6010B ²
Lead	0.23	D008	5.0	0.025	0.0089	mg/l	5	06/15/15	06/15/15 NS	SW846 6010B ²
Mercury	0.000050 U	D009	0.20	0.00020	0.000050) mg/l	1	06/15/15	06/15/15 CC	SW846 7470A ¹
Nickel	0.013 J			0.20	0.0070	mg/l	5	06/15/15	06/15/15 NS	SW846 6010B ²
Selenium	0.0049 U	D010	1.0	0.050	0.0049	mg/l	5	06/15/15	06/15/15 NS	SW846 6010B ²
Silver	0.0012 U	D011	5.0	0.050	0.0012	mg/l	5	06/15/15	06/15/15 NS	SW846 6010B ²

(1) Instrument QC Batch: MA11098 (2) Instrument QC Batch: MA11100 (3) Prep QC Batch: MP26094 (4) Prep QC Batch: MP26101

MQL = Method Quantitation Limit SDL = Sample Detection Limit MCL = Maximum Contamination Level (40 CFR 261 6/96)

J = Indicates a result >= SDL but < MQL

U = Indicates a result < SDL

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Chain of Custody
- LRC Form

																					6	-		_	70	كلا	354	18	
																				7	Y.Y			C	HAIN	OF	CUST	DDY RI	ECORD
	ΑĪ	PEX e Locatio					Labora Addres Contac	s:				~~~ e-v				An Re	ALY: QUE	SIS STE	12 Car 12 Car 14	The County of	THE PARTY OF THE P						Oue D	of coolers sceived (C	9; 4 5
		Delle	(Selection)				Phone	\mathbb{R}^2	-7:	<u> </u>	t70	0						ালে কাৰ	war.	Ŋ,	1	1	1	- /		1	Page	\of	Ç
	Proje	ct Mana	јег <u>7</u>	mis	50	γ	PO/SC	#:								-	-	Ş.	7	J.	/		/	\mathcal{I}	1)	/			
		or's Name			,,,,,,,,,		Sampler's	Signa	ture								`.' 'a	9]		γ,	Ι,	/	/	/	//				
	100	n/Ma	iter				D 292) <u>~</u>							j	ا الحد	3	1	1	1		1	/ /	/ /				
	Proj. N	10. X (ZCO)		Proje		ime WALC	cela	-			No/Ty	rpe of C	ontais	iérs			Han Z	Ž,	Ý	/	/	1	/	\int					
	Matrix	Date	Time	Caep	G Lab	ldentitying Ma	rks of Sam	ole(s)	Start Depth	End Depth	¥C.	84G 11.	259	Glass Jar	0.9	K		\ \ \ \ \ \	となると	/		/	[L	Ĺ.,	Lab \$	Sample ID	(Lab Use :	Only)
Ĺ	5	a-8-15	19.14	-	χ	2015-LDS	2-600LI	اد-د <u>ا</u>	٥	5.Z5					l	20	¥	¥										.,	
2	<u> </u>	(Junger 145	2015		у.,	2015-COF	-50LI	-07	0	ე. <i>Մ</i> -5					1		γü				ļ								v=v==-(
	r			Á	<u> </u>	They Bis	بليد						L					Ť		1						,, r ,			
						•													91,011	200	1								v/1>.v-w>-vi-
																				į	ĺ								
				یسم 🕽	-															- 1									
			D													-													
		T)	(H)	U	1																								
		D.																											
	٠						.,,,,,													Ī									
		round lime	(INo] 50% Rus		100%				-	Date		_	Time:		OTE	٥.									
<	Heino	uished by			ís	Date:	10 15	الاجرع	يعاتا	(Signa				2-4-4	5		lime:		101E m m	s: } € .	Z.	1. 1	-	s 1	27	n La	mi l		
		raished by	(Signature	}	(Date;	700	Pereiv PJ (ed by:	(Signa (Signa	iture} Mi∛t	1	ĺ	Date [][0]	[-		ime:	1	سلبتا إ	سرياب	7	(2.1	-	ŲΙ	UF	7 (2)	Uq		
		uished by					Time:	Receiv	ed by:	(Sigaa	ture)/	·		baile		j	lime:												
	Refino	uished by								(Signa				Date			lîme:												
	Matrix Contair		V - Wastew A - 40 ml vi			W - Water A/G - Amber / C		D ∙ So iter		Liqui 250 ml -	d A Grass	. Air Bi wide m	agr agr	C ·	C) - E	ecoal Iastic	lube or olbe	ا8 ع	_ • sfe	ige		0.0	ß ,						

Apex TITAN, Inc. • 2351 W. Northwest Hwy., Suite 3321 • Daflas, Texas 75220 • Office: 214-350-5469 • Fax 214-350-2914

TC68548: Chain of Custody Page 1 of 3

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: TC685	548	Clie	nt: APEX			Project: SEAWORTCRE	EK		
Date / Time Received: 6/10/2	015		Delivery	Method	l:	Airbill #'s: 617012796104			
No. Coolers: 1	Therm	n ID: IR-5;				Temp Adjustment Factor:	0;		
Cooler Temps (Initial/Adjusted	i): <u>#1</u>	: (0.8/0.8);							
Cooler Security Y	or N			ΥÓ	or N	Sample Integrity - Documentation	Υ	or N	
1. Custody Seals Present:		3. CO	C Present:	✓		Sample labels present on bottles:	V		
2. Custody Seals Intact: ✓		4. Smpl [ates/Time OK	✓		Container labeling complete:	✓		
Cooler Temperature	Υ¢	or N				3. Sample container label / COC agree:	✓		
Temp criteria achieved:	<u> </u>					Sample Integrity - Condition	_Y	or N	
Cooler temp verification:			_			1. Sample recvd within HT:	V		
Cooler media:	lce	e (Bag)				All containers accounted for:	✓		
Quality Control Preservation	Υ	or N I	N/A	WTB	STB	3. Condition of sample:		Intact	
1. Trip Blank present / cooler:			✓			Sample Integrity - Instructions	Υ	or N	N/A
2. Trip Blank listed on COC:			✓			Analysis requested is clear:	<u> </u>		
3. Samples preserved properly:	~					Bottles received for unspecified tests		✓	
4. VOCs headspace free:			v			3. Sufficient volume recvd for analysis:	~		
						4. Compositing instructions clear:			\checkmark
						5. Filtering instructions clear:			\checkmark
Comments									
Accutest Laboratories V:713.271.4700						arwin Drive 271.4770			Houston, TX 77036 www/accutest.com

TC68548: Chain of Custody Page 2 of 3

Page 1 of 2

Sample Receipt Log

 Job #:
 TC68548
 Date / Time Received:
 6/10/2015 9:00:00 AM
 Initials:
 BH

Client: APEX

Coo	ler#	Sample ID:	Vol	Bot #	Location	Pres	pH	Therm ID	Initial Temp	Therm CF	Corrected Temp
,	1	TC68548-1	4oz	1	2-18	N/P	Note #2 - Preservative check not applicable.	IR-5	0.8	0	0.8
,	1	TC68548-2	4oz	1	2-18	N/P	Note #2 - Preservative check not applicable.	IR-5	0.8	0	0.8

__

TC68548: Chain of Custody

Page 3 of 3

Appendix A Laboratory Data Package Cover Page

TC68548 This data package consists of

[]

Ģ		ture page, the laboratory review check	list, and the following reportable data:	
Ģ	R1	Field chain-of-custody documentation		
	R2	Sample identification cross-reference		
	R3	Test reports (analytical data sheets) f	or each environmental sample that includes:	
		a)	Items consistent with NELAC 5.13 or ISO/IEC	2 17025 Section 5.10
		b)	dilution factors,	
		c)	preparation methods,	
		d)	cleanup methods, and	
		e)	if required for the project, tentatively identified	d compounds (TICs).
Ģ	R4	Surrogate recovery data including:		
		a)	Calculated recovery (%R), and	
		b)	The laboratory's surrogate QC limits.	
	R5	Test reports/summary forms for blank	samples;	
	R6	Test reports/summary forms for labor	atory control samples (LCSs) including:	
		a)	LCS spiking amounts,	
		b)	Calculated %R for each analyte, and	
		c)	The laboratory's LCS QC limits.	
	R7	Test reports for project matrix spike/n	natrix spike duplicates (MS/MSDs) including:	
		a)	Samples associated with the MS/MSD clearly	/ identified,
		b)	MS/MSD spiking amounts,	
		c)	Concentration of each MS/MSD analyte measurements	sured in the parent and
		d)	Calculated %Rs and relative percent differen	ces (RPDs), and
		e)	The laboratory's MS/MSD QC limits	
Ţ.	R8	Laboratory analytical duplicate (if app	olicable) recovery and precision:	
		a)	The amount of analyte measured in the dupli	cate,
		b)	The calculated RPD, and	
		c)	The laboratory's QC limits for analytical dupli	cates.
Ģ	R9	List of method quantitation limits (MC	Ls) and detectability check sample results for	each analyte for each
Ţ.	R10	Other problems or anomalies.		
			item in Laboratory Review Checklist and for e	
method for	which the la	aboratory does not hold NELAC accre	ditation under the Texas Laboratory Accredita	tion Program.
Release S	tatement:	I am responsible for the release of this	s laboratory data package. This laboratory is N	NELAC accredited under the
Texas Lab	oratory Acci	editation Program for all the methods,	analytes, and matrices reported in this data p	ackage except as noted in
the Excepti	on Report.	This data package has been reviewed	by the laboratory and is complete and technic	cally compliant with the
requiremen	nts of the me	ethods used, except where noted by the	ne laboratory in the attached exception reports	. By my signature below, I
affirm to the	e best of my	knowledge, all problems/anomalies,	observed by the laboratory as having the poter	ntial to affect the quality of
the data, ha	ave been id	entified by the laboratory in the Labora	atory Review Checklist, and no information or	data have been knowingly
withheld.				
Check, if a	applicable:	This laboratory meets an exception u	nder 30 TAC&25.6 and was last inspection by	,
[]		[X 1 TCFO or [] on April 20	011. Any findings affecting the data in this labor	oratory data package are
			n. The official signing the cover page of the rep	
			data package and is by signature affirming the	
		is true.	and paonago and to by digitative annihing the	a above release statement
QA Manag	ıer	10 11 00.		
Name (Prir		Signature	Official Title (printed)	Date
ranic (i iii	nou)	Oigi iataro	Silisiai Tilio (pilitica)	Dato
Richard Ro	odriguez	Hund	Laboratory Director	6/22/2015

	L	ABORATORY REVIEW (CHECKLIST: REPORTABLE	DAT	Ά			
Laboratory	Name:	Accutest Gulf Coast	LRC Date:	6/2	2/20	15		
Project Na	me:	7020112C079 / Stewart Creek	Laboratory Project Number:	TC	6854	8		
Reviewer		Anita Patel	Prep Batch Number(s):	GP32 MP20 MP20	2496 6101 6111		6094 6109	i,),
# ¹	A ²	DESCRIPTION		YES	NO	NA³	NR⁴	ER #5
R1	OI	CHAIN-OF-CUSTODY (C-O-C):				_		
		upon receipt?	andard conditions of sample acceptability onditions described in an exception report?	X				
R2	OI	'			ш			
	<u> </u>	Sample and quality control (QC) ic					1	
		-	s-referenced to the laboratory ID numbers?	X				
R3	OI	Test reports	referenced to the corresponding QC data?	<u> </u>	ш			
	<u> </u>	Were samples prepared and analyze	ed within holding times?	Х				
			e all other raw values bracketed by calibration					
		standards?	San outer raw values bracketed by cambration	X				
		Were calculations checked by a pee	r or supervisor?	Х				
		Were all analyte identifications check		X				
		Were sample detection limits reporte	ed for all analytes not detected?	Х				
		Were all results for soil and sedimen	t samples reported on a dry weight basis?	Х				
		Were % moisture (or solids) reported		Х				
			olatile analysis extracted with methanol per			х		
		SW846 Method 5035?						
		If required for the project, are TIC's re	eported?		ш	Χ		
R4	0	Surrogate recovery data Were surrogates added prior to extra	action?			v 1	1	
			n all samples within the laboratory QC limits?			X		
R5	OI	Test reports/summary forms for b	· · · · · · · · · · · · · · · · · · ·			^		
- 113	<u> </u>	Were appropriate type(s) of blanks a		Х			П	
		Were blanks analyzed at the approp		X				
			the entire analytical process, including	V				
		preparation and, if applicable, cleanu	up procedures?	Х				
		Were blank concentrations <mql?< td=""><td></td><td>X</td><td></td><td></td><td></td><td></td></mql?<>		X				
R6	OI	Laboratory control samples (LCS)						
		Were all COCs included in the LCS?		X				
		cleanup steps?	tire analytical procedure, including prep and	Х				
		Were LCSs analyzed at required free	quency?	X				
			%Rs within the laboratory QC limits?	X				
			data document the laboratory's capability to					
		detect the COCs at the MDL used to		X				
		Was the LCSD RPD within QC limits	s?			Χ		
R7	OI	Matrix spike (MS) and matrix spike						
			nalytes included in the MS and MSD?	X				
		Were MS/MSD analyzed at the appr	1 ,	X				
		Were MS (and MSD, if applicable) % Were the MS/MSD RPDs within labor		-	X			4
R8	OI		DIALOTY GO IIIIIIIS!					4
1/0	J.	Analytical duplicate data Were appropriate analytical duplicate	es analyzed for each matrix?	X				
		Were analytical duplicates analyzed		X				
			iations within the laboratory QC limits?	X				
R9	OI	Method quantitation limits (MQLs)		Ė				
			rte included in the laboratory data package?	Х			1	
			centration of the lowest non-zero calibration	Х				
			luded in the laboratory data package?		Χ			2
R10	OI	Other problems/anomalies						
			pecial conditions noted in this LRC and ER?	Х				
			ology used to lower the SDL to minimize the	X				
			under the Texas Laboratory Accreditation					_
		, ,	and methods associated with this laboratory	X				3
		data package?			Ш			

Laboratory	Name:	Accutest Gulf Coast	LRC Date:	6/2	2/20	15		
Project Na	me:	7020112C079 / Stewart Creek	Laboratory Project Number:	TC	6854	18		
Reviewer	Name:	Anita Patel	Prep Batch Number(s):	GP3	2496 6101	, MP , MP	6630 2609 2610	4,
#1	A ²	DESCRIPTION		YES	NO	NA ³	INR ⁴	ER#5
S1	OI	Initial calibration (ICAL)						
			re response factors for each analyte within QC	V	Π		1	
		limits?	•	X				
		Were percent RSDs or correlation co	pefficient criteria met?	Х				
		Was the number of standards recom	nmended in the method used for all analytes?	Х				
		Were all points generated between t	he lowest and highest standard used to	Х				
		calculate the curve?						
		Are ICAL data available for all instru		Х				
		Has the initial calibration curve been	verified using an appropriate second source	×				
		standard?		_^				
S2	OI		verification (ICCV AND CCV) and continuing					
		Was the CCV analyzed at the method		Х				
			nalyte within the method-required QC limits?	X				
		Was the ICAL curve verified for each	•	Х				
			te concentration in the inorganic CCB <mdl?< td=""><td></td><td>Х</td><td></td><td></td><td>5</td></mdl?<>		Х			5
S3	0	Mass spectral tuning			_		1	
		Was the appropriate compound for t				X		
		Were ion abundance data within the	method-required QC limits?			Χ		
S4	0	Internal standards (IS)				l 1/		
- 05			mes within the method-required QC limits?		_	Х		
S5	OI	Raw data (NELAC Section 5.5.10)					_	
		` '	omatograms, spectral data) reviewed by an	Х				
		analyst? Were data associated with manual in	atogrations flagged on the row date?	X				-
S6	0	Dual column confirmation	ntegrations hagged on the raw data?					
30		Did dual column confirmation results	s meet the method-required OC2			Х		
S7	0	Tentatively identified compounds						_
	_ <u> </u>		ss spectra and TIC data subject to appropriate		П		Ī	
		checks?				Х		
S8	1	Interference Check Sample (ICS)	results					
		Were percent recoveries within meth		Х	П	П	Π	
S9	ı		ikes, and method of standard additions					
		Were percent differences, recoveries	s, and the linearity within the QC limits		V			
		specified in the method?	·		Х			4
S10	OI	Method detection limit (MDL) stud	lies					
		Was a MDL study performed for each		Х				
		Is the MDL either adjusted or support	rted by the analysis of DCSs?	Х				
S11	OI	Proficiency test reports						
			cceptable on the applicable proficiency tests or	l x				
		evaluation studies?		Ľ	L			
S12	OI	Standards documentation			_			
		•	es NIST-traceable or obtained from other	X			1	
		appropriate source?						
S13	OI	Compound/analyte identification		.,				
C11		Are the procedures for compound/ar		X				
S14	OI	Demonstration of analyst compete		V				
		Was DOC conducted consistent with		X	\vdash		-	
C1E		Is documentation of the analyst's cor		Х				
S15	OI		ation for methods (NELAC Chapter 5)					
		validated, where applicable?	e the data documentated, verified, and	Х			1	
S16	OI	Laboratory standard operating pr	ocedures (SOPs)					
310	 	Are laboratory SOPs current and on		Х	I		Ī	
		1. 1.0 .abbratory COT Courtont and Off	cac motiou ponomica.					

	LABOI	RATORY REVIEW CHEC	CKLIST (continued): Ex	ception Reports		
Laboratory	/ Name:	Accutest Gulf Coast	LRC Date:	6/22/2015		
Project Name:		7020112C079 / Stewart Creek	Laboratory Project Number:	TC68548		
Reviewer	Name:	Anita Patel	Prep Batch Number(s):	GN66305, GN66306, GP32496, MP26094, MP26101, MP26109, MP26111		
ER#1	Descripti	on		<u>'</u>		
1		ing purposes, the MQL is defined in the SDL is defined in the report as the M	ne report as the RL. The unadjusted M	QL/RL is reported in the method		
· ·	For reporting purposes, the method blank represents the unadjusted MQL. The DCS is on file in the laboratory and is no					
2	included in the laboratory data package.					
3	1	,	Texas Laboratory Accreditation Progra			
3 4	methods a	,	ckage for analytes that are listed in the			
	methods a	associated with this laboratory data pa	ckage for analytes that are listed in the			
4	methods a	associated with this laboratory data pa lies are discussed in the case narrativ	ckage for analytes that are listed in the			
4	methods a	associated with this laboratory data pa lies are discussed in the case narrativ	ckage for analytes that are listed in the			
4	methods a	associated with this laboratory data pa lies are discussed in the case narrativ	ckage for analytes that are listed in the			
4	methods a	associated with this laboratory data pa lies are discussed in the case narrativ	ckage for analytes that are listed in the			

1ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked on

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries
- Metals CCB MDL Check

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: TC68548 Account: APEXTTXD - APEX TITAN, Inc. Project: 7020112C079 / Stewart Creek

QC Batch ID: MP26094 Methods: SW846 6010B Matrix Type: LEACHATE Units: mg/l

06/15/15 06/15/15 Prep Date:

I.							
Metal	RL	IDL	MDL	MB raw	final	MB raw	final
Aluminum	1.0	.041	.061				
Antimony	0.025	.005	.0051	-0.0096	<0.025	-0.0090	<0.025
Arsenic	0.050	.0085	.005	-0.00045	<0.050	-0.00065	<0.050
Barium	5.0	.0049	.017	0.0015	<5.0	-0.00047	<5.0
Beryllium	0.025	.00028	.0008	-0.00038	<0.025	-0.00079	<0.025
Boron	0.50	.007	.039				
Cadmium	0.020	.00055	.00045	-0.00085	<0.020	-0.00058	<0.020
Calcium	25	.037	.12				
Chromium	0.050	.0012	.0014	-0.00036	<0.050	-0.0021	<0.050
Cobalt	0.25	.00075	.0011				
Copper	0.13	.0056	.03				
Iron	0.50	.0057	.12				
Lead	0.025	.005	.0089	-0.0022	<0.025	0.00097	<0.025
Lithium	1.5	.01	.01				
Magnesium	25	.038	.04				
Manganese	0.075	.00027	.0093				
Molybdenum	0.050	.002	.001				
Nickel	0.20	.0035	.007	0.0029	<0.20	0.0	<0.20
Potassium	25	. 2	.22				
Selenium	0.050	.0077	.0049	-0.0089	<0.050	-0.015	<0.050
Silver	0.050	.0058	.0012	0.00099	<0.050	-0.00036	<0.050
Sodium	25	.046	.52				
Strontium	0.050	.00031	.002				
Thallium	0.050	.0034	.0058				
Tin	0.10	.0035	.014				
Titanium	0.10	.0015	.0015				
Vanadium	0.25	.0015	.0015				
Zinc	0.50	.0026	.017				

Associated samples MP26094: TC68548-1A, TC68548-2A

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\dot{\ }$

QC Batch ID: MP26094 Methods: SW846 6010B Matrix Type: LEACHATE Units: mg/l

06/15/15 Prep Date:

Metal	TC68548- Original		Spikelot MPTW11		QC Limits
Aluminum					
Antimony	0.0	0.42	0.40	105.0	75-125
Arsenic	0.0	0.44	0.40	110.0	75-125
Barium	0.48	0.85	0.40	92.5	75-125
Beryllium	0.0	0.42	0.40	105.0	75-125
Boron					
Cadmium	0.0070	0.43	0.40	105.8	75-125
Calcium					
Chromium	0.0049	0.41	0.40	101.3	75-125
Cobalt					
Copper					
Iron					
Lead	0.14	0.51	0.40	92.5	75-125
Lithium					
Magnesium					
Manganese					
Molybdenum					
Nickel	0.020	0.40	0.40	95.0	75-125
Potassium					
Selenium	0.0	0.43	0.40	107.5	75-125
Silver	0.0	0.41	0.40	102.5	75-125
Sodium					
Strontium					
Thallium					
Tin					
Titanium					
Vanadium					
Zinc					

Associated samples MP26094: TC68548-1A, TC68548-2A

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits

QC Batch ID: MP26094 Methods: SW846 6010B Matrix Type: LEACHATE Units: mg/l

Prep Date:

06/15/15

Metal	TC68548- Original		Spikelot MPTW11	% Rec	MSD RPD	QC Limit
Aluminum						
Antimony	0.0	0.42	0.40	105.0	0.0	20
Arsenic	0.0	0.44	0.40	110.0	0.0	20
Barium	0.48	0.86	0.40	95.0	1.2	20
Beryllium	0.0	0.42	0.40	105.0	0.0	20
Boron						
Cadmium	0.0070	0.43	0.40	105.8	0.0	20
Calcium						
Chromium	0.0049	0.41	0.40	101.3	0.0	20
Cobalt						
Copper						
Iron						
Lead	0.14	0.52	0.40	95.0	1.9	20
Lithium						
Magnesium						
Manganese						
Molybdenum						
Nickel	0.020	0.40	0.40	95.0	0.0	20
Potassium						
Selenium	0.0	0.43	0.40	107.5	0.0	20
Silver	0.0	0.41	0.40	102.5	0.0	20
Sodium						
Strontium						
Thallium						
Tin						
Titanium						
Vanadium						
Zinc						

Associated samples MP26094: TC68548-1A, TC68548-2A

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits

QC Batch ID: MP26094 Matrix Type: LEACHATE Methods: SW846 6010B

Units: mg/l

Prep Date:

06/15/15

Plep Date:			00/13/1	3
Metal	BSP Result	Spikelot MPTW11	% Rec	QC Limits
Aluminum				
Antimony	0.40	0.40	100.0	80-120
Arsenic	0.42	0.40	105.0	80-120
Barium	0.41	0.40	102.5	80-120
Beryllium	0.43	0.40	107.5	80-120
Boron				
Cadmium	0.41	0.40	102.5	80-120
Calcium				
Chromium	0.41	0.40	102.5	80-120
Cobalt				
Copper				
Iron				
Lead	0.37	0.40	92.5	80-120
Lithium				
Magnesium				
Manganese				
Molybdenum				
Nickel	0.38	0.40	95.0	80-120
Potassium				
Selenium	0.43	0.40	107.5	80-120
Silver	0.41	0.40	102.5	80-120
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc				

Associated samples MP26094: TC68548-1A, TC68548-2A

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\dot{\ }$

(anr) Analyte not requested

ACCUTEST

TC68548

SERIAL DILUTION RESULTS SUMMARY

Login Number: TC68548 Account: APEXTTXD - APEX TITAN, Inc. Project: 7020112C079 / Stewart Creek

QC Batch ID: MP26094 Methods: SW846 6010B Matrix Type: LEACHATE Units: ug/l

06/15/15 Prep Date:

QC Limits
0-10
0-10
0-10
0-10
0-10
0-10
0-10
0-10
0-10
0-10
0-10
0-10
0-10
0-10
0-10
0-10

Associated samples MP26094: TC68548-1A, TC68548-2A

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(anr) Analyte not requested

(a) Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: TC68548 Account: APEXTTXD - APEX TITAN, Inc. Project: 7020112C079 / Stewart Creek

QC Batch ID: MP26101 Methods: SW846 7470A

06/15/15 Prep Date:

MB IDL MDL Metal RL raw final -0.000045<0.00020

Units: mg/l

Associated samples MP26101: TC68548-1A, TC68548-2A

0.00020 .00005 .00005

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\bar{\ }$

(anr) Analyte not requested

Matrix Type: LEACHATE

Mercury

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: TC68548 Account: APEXTTXD - APEX TITAN, Inc. Project: 7020112C079 / Stewart Creek

QC Batch ID: MP26101 Methods: SW846 7470A Matrix Type: LEACHATE Units: mg/l

06/15/15 Prep Date:

Metal	TC6854		Spikelo HGTXAQ4		QC Limits
Mercury	0.0	0.0030	0.0030	100.0	75-125

Associated samples MP26101: TC68548-1A, TC68548-2A

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\hfill \hfill$

(N) Matrix Spike Rec. outside of QC limits

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: TC68548 Account: APEXTTXD - APEX TITAN, Inc. Project: 7020112C079 / Stewart Creek

QC Batch ID: MP26101 Methods: SW846 7470A Matrix Type: LEACHATE Units: mg/l

Prep Date:

06/15/15

Metal	TC68548-1 Original		Spikelot HGTXAQ40		MSD RPD	QC Limit
Mercury	0.0	0.0030	0.0030	100.0	0.0	20

Associated samples MP26101: TC68548-1A, TC68548-2A

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\hfill \hfill$

(N) Matrix Spike Rec. outside of QC limits

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: TC68548 Account: APEXTTXD - APEX TITAN, Inc. Project: 7020112C079 / Stewart Creek

QC Batch ID: MP26101 Methods: SW846 7470A

Matrix Type: LEACHATE Units: mg/l

06/15/15 Prep Date:

Associated samples MP26101: TC68548-1A, TC68548-2A

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\bar{\ }$ (anr) Analyte not requested

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: TC68548 Account: APEXTTXD - APEX TITAN, Inc. Project: 7020112C079 / Stewart Creek

QC Batch ID: MP26109 Matrix Type: SOLID

Methods: SW846 6020A

Units: mg/kg

Prep Date:

06/17/15

Metal	RL	IDL	MDL	MB raw	final
Aluminum	13	3.1	.83		
Antimony	0.50	.006	.018	-0.087	<0.50
Arsenic	0.50	.015	.019	-0.068	<0.50
Barium	0.25	.0033	.081	-0.051	<0.25
Beryllium	0.25	.005	.013	-0.068	<0.25
Boron	1.3	.091	.7		
Cadmium	0.25	.0073	.022	-0.060	<0.25
Calcium	63	3.1	2.8	-1.6	<63
Chromium	0.25	.0078	.038	-0.059	<0.25
Cobalt	0.50	.0048	.018		
Copper	0.50	.011	.057		
Iron	13	4	.99		
Lithium	0.25	.088			
Lead	0.25	.0063	.035	-0.031	<0.25
Magnesium	63	3	2.6	-0.52	<63
Manganese	0.25	.0065	.12		
Molybdenum	0.25	.088	.09		
Nickel	0.50	.0068	.033	0.024	<0.50
Potassium	63	3.3	1.2		
Selenium	0.50	.12	.061	-0.0088	<0.50
Silver	0.25	.0045	.017	-0.017	<0.25
Sodium	63	3	2.9		
Strontium	1.3	.0085	.015		
Thallium	0.25	.013	.024		
Tin	1.3	.012	.09		
Titanium	1.3	.073	.052		
Vanadium	0.25	.0085	.045		
Zinc	0.50	.011	.15		

Associated samples MP26109: TC68548-1, TC68548-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\dot{\ }$

QC Batch ID: MP26109 Methods: SW846 6020A Matrix Type: SOLID Units: mg/kg

06/17/15 Prep Date:

Metal	TC67604 Origina		Spikelot MPTWll	% Rec	QC Limits
Antimony	14.6	33.4	24.2	77.8	75-125
Arsenic	158	241	24.2	343.3(a)	75-125
Barium	250	202	24.2	-198.5(a	75-125
Beryllium	0.49	21.4	24.2	86.5	75-125
Cadmium	0.82	25.0	24.2	100.0	75-125
Calcium	61700	69700	3020	264.7(a)	75-125
Chromium	37.0	61.1	24.2	99.7	75-125
Lead	24.7	64.0	24.2	162.5N(b	75-125
Magnesium	2460	5390	3020	96.9	75-125
Nickel	10.2	36.3	24.2	107.9	75-125
Selenium	0.50	16.6	24.2	66.6N(b)	75-125
Silver	0.72	25.4	24.2	102.1	75-125

Associated samples MP26109: TC68548-1, TC68548-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

- (N) Matrix Spike Rec. outside of QC limits
- (anr) Analyte not requested
- (a) Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information.
- (b) Spike recovery indicates possible matrix interference or sample non-homogeneity.

Account: APEXTTXD - APEX TITAN, Inc. Project: 7020112C079 / Stewart Creek

QC Batch ID: MP26109 Matrix Type: SOLID

Prep Date:

06/17/15

Methods: SW846 6020A

Units: mg/kg

Metal	TC67604- Original		Spikelot MPTW11	: % Rec	MSD RPD	QC Limit
Antimony	14.6	26.6	24.2	49.6N(a)	22.7 (b)	20
Arsenic	158	144	24.2	-57.9(c)	50.4 (b)	20
Barium	250	180	24.2	-289.5(c	11.5	20
Beryllium	0.49	20.0	24.2	80.7	6.8	20
Cadmium	0.82	23.5	24.2	93.8	6.2	20
Calcium	61700	68000	3020	208.4(c)	2.5	20
Chromium	37.0	50.9	24.2	57.5N(a)	18.2	20
Lead	24.7	62.8	24.2	157.6N(a	1.9	20
Magnesium	2460	4990	3020	83.7	7.7	20
Nickel	10.2	34.5	24.2	100.5	5.1	20
Selenium	0.50	16.1	24.2	64.5N(a)	3.1	20
Silver	0.72	24.0	24.2	96.3	5.7	20

Associated samples MP26109: TC68548-1, TC68548-2

Results < IDL are shown as zero for calculation purposes

- (*) Outside of QC limits
- (N) Matrix Spike Rec. outside of QC limits
- (anr) Analyte not requested
- (a) Spike recovery indicates possible matrix interference or sample non-homogeneity.
- (b) High RPD due to possible sample nonhomogeneity or matrix interference.
- (c) Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information.

35 of 47
ACCUTEST
TC68548

QC Batch ID: MP26109 Matrix Type: SOLID Methods: SW846 6020A

Units: mg/kg

Prep Date:

06/17/15

Prep Date.			00/1//15	
Metal	LCS Result	Spikelot MPLCD068		QC Limits
Aluminum				
Antimony	80.2	94	85.3	0-214
Arsenic	110	113	97.3	78-122
Barium	169	155	109.0	82-117
Beryllium	105	109	96.3	83-117
Boron				
Cadmium	70.1	67.5	103.9	82-118
Calcium	5920	5850	101.2	81-119
Chromium	172	164	104.9	79-121
Cobalt				
Copper				
Iron				
Lithium				
Lead	91.4	90.1	101.4	82-119
Magnesium	3070	2790	110.0	76-125
Manganese				
Molybdenum				
Nickel	88.2	89.3	98.8	82-118
Potassium				
Selenium	141	156	90.4	78-122
Silver	53.7	52.6	102.1	75-125
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc				

Associated samples MP26109: TC68548-1, TC68548-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\dot{\ }$

SERIAL DILUTION RESULTS SUMMARY

Login Number: TC68548
Account: APEXTTXD - APEX TITAN, Inc.
Project: 7020112C079 / Stewart Creek

QC Batch ID: MP26109 Methods: SW846 6020A Matrix Type: SOLID Units: ug/l

Prep Date: 06/17/15

Metal	TC67604- Original	12 SDL 5:25	%DIF	QC Limits
Antimony	239	243	1.7	0-10
Arsenic	2590	3440	32.9*(a)	0-10
Barium	4090	4110	0.5	0-10
Beryllium	8.01	3.65	54.5*(a)	0-10
Cadmium	13.4	9.66	28.2*(a)	0-10
Calcium	1010000	1170000	15.5*(a)	0-10
Chromium	607	685	12.9*(a)	0-10
Lead	405	431	6.6	0-10
Magnesium	40400	44100	9.2	0-10
Nickel	168	180	7.2	0-10
Selenium	8.24	13.0	57.4 (b)	0-10
Silver	11.8	9.45	19.6*(a)	0-10

Associated samples MP26109: TC68548-1, TC68548-2

Results < IDL are shown as zero for calculation purposes

- (*) Outside of QC limits
- (anr) Analyte not requested
- (a) Serial dilution indicates possible matrix interference.
- (b) Percent difference acceptable due to low initial sample $\,$ concentration (< 50 times IDL).

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: TC68548
Account: APEXTTXD - APEX TITAN, Inc.
Project: 7020112C079 / Stewart Creek

Units: mg/kg

QC Batch ID: MP26111 Methods: SW846 7471A

Prep Date: 06/17/15

Associated samples MP26111: TC68548-1, TC68548-2

Matrix Type: SOLID

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

38 of 47
ACCUTEST.
TC68548

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: TC68548 Account: APEXTTXD - APEX TITAN, Inc. Project: 7020112C079 / Stewart Creek

QC Batch ID: MP26111 Methods: SW846 7471A Matrix Type: SOLID Units: mg/kg

06/17/15 Prep Date:

Metal	TC68645 Origina		Spikelot HGTXWS1		QC Limits
Mercury	0.0	0.39	0.461	84.7	75-125

Associated samples MP26111: TC68548-1, TC68548-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\hfill \hfill$

(N) Matrix Spike Rec. outside of QC limits

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: TC68548 Account: APEXTTXD - APEX TITAN, Inc. Project: 7020112C079 / Stewart Creek

QC Batch ID: MP26111 Methods: SW846 7471A Matrix Type: SOLID Units: mg/kg

Prep Date:

06/17/15

Metal	TC6864! Origina		Spikelot HGTXWS1	% Rec	MSD RPD	QC Limit
Mercury	0.0	0.39	0.461	84.5	0.0	20

Associated samples MP26111: TC68548-1, TC68548-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\hfill \hfill$

(N) Matrix Spike Rec. outside of QC limits

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: TC68548
Account: APEXTTXD - APEX TITAN, Inc.
Project: 7020112C079 / Stewart Creek

QC Batch ID: MP26111 Methods: SW846 7471A Matrix Type: SOLID Units: mg/kg

Prep Date: 06/17/15

Metal	LCS Result	Spikelot HGLCD068		QC Limits
Mercury	6.7	8.37	80.0	73-128

Associated samples MP26111: TC68548-1, TC68548-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

Page 1 of 1

Metals CCB MDL Check

Job Number: TC68548

Account: APEXTTXD APEX TITAN, Inc. Project: 7020112C079 / Stewart Creek

The following elements are braketed by CCB's at or above the MDL.

Sample	Element	Run ID	Time	MDL	Units	ССВ В	efore	CCB A	fter
TC68548-1A	Mercury	MA11098	17:00	.050	ug/l	CCB5	-0.067	CCB6	-0.056
TC68548-2A	Mercury	MA11098	17:06	.050	ug/l	CCB5	-0.067	CCB6	-0.056
TC68548-1A	Antimony	MA11100	17.00	1.0	na/I	CCB7	-0.38	CCB8	-1.0
	Antimony				ug/l				
TC68548-2A	Antimony	MA11100		1.0	ug/l	CCB7	-0.38	CCB8	-1.0
TC68548-1A	Selenium	MA11100		.98	ug/l	CCB7	-1.6	CCB8	-0.53
TC68548-2A	Selenium	MA11100	17:36	.98	ug/l	CCB7	-1.6	CCB8	-0.53
						~~~	0.55	a an a	0.00
TC68548-1	Antimony	MA11114		.073	ug/l	CCB2	-0.27	CCB3	-0.30
TC68548-2	Antimony	MA11114	13:27	.073	ug/l	CCB2	-0.27	CCB3	-0.30
TC68548-1	Arsenic	MA11114	13:15	.074	ug/l	CCB2	-0.25	CCB3	-0.28
TC68548-2	Arsenic	MA11114	13:27	.074	ug/l	CCB2	-0.25	CCB3	-0.28
TC68548-1	Beryllium	MA11114	13:15	.053	ug/l	CCB2	-0.27	CCB3	-0.27
TC68548-2	Beryllium	MA11114	13:27	.053	ug/l	CCB2	-0.27	CCB3	-0.27
TC68548-1	Cadmium	MA11114	13:15	.086	ug/l	CCB2	-0.24	CCB3	-0.24
TC68548-2	Cadmium	MA11114	13:33	.086	ug/l	CCB2	-0.24	CCB3	-0.24
TC68548-1	Chromium	MA11114	13:15	.15	ug/l	CCB2	-0.25	CCB3	-0.26
TC68548-2	Chromium	MA11114	13:33	.15	ug/l	CCB2	-0.25	CCB3	-0.26
TC68548-2	Lead	MA11114	13:33	.14	ug/l	CCB2	-0.16	CCB3	-0.092
					J				
TC68548-1	Calcium	MA11120	07:44	11	ug/l	CCB2	-21	CCB3	-18
TC68548-2	Calcium	MA11120	08:03	11	ug/l	CCB2	-21	CCB3	-18
TC68548-1	Lead	MA11120	07:37	.14	ug/l	CCB2	-0.23	CCB3	-0.20





## **General Chemistry**

## QC Data Summaries

### Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries
- General Chemistry CCB MDL Check



### METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TC68548
Account: APEXTTXD - APEX TITAN, Inc.
Project: 7020112C079 / Stewart Creek

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Bromide	GP32496/GN66412	2.5	0.0	mg/kg	49.8	48.2	96.8	90-110%
Chloride	GP32496/GN66412	2.5	0.0	mg/kg	49.8	50.3	101.0	90-110%
Fluoride	GP32496/GN66412	2.5	0.0	mg/kg	49.8	49.2	98.8	90-110%
Sulfate	GP32496/GN66412	2.5	0.0	mg/kg	49.8	53.7	107.8	90-110%

Associated Samples: Batch GP32496: TC68548-1, TC68548-2 (*) Outside of QC limits



### DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TC68548 Account: APEXTTXD - APEX TITAN, Inc. Project: 7020112C079 / Stewart Creek

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits
Bromide	GP32496/GN66412	TC68635-2	mg/kg	0.0	0.0	0.0	0-20%
Chloride	GP32496/GN66412	TC68635-2	mg/kg	194	196	1.0	0-20%
Fluoride	GP32496/GN66412	TC68635-2	mg/kg	84.9	84.5	0.5	0-20%
Solids, Percent	GN66305	TC68548-1	ક	57.8	57.2	1.0	0-5%
Sulfate	GP32496/GN66412	TC68635-2	mg/kg	679	625	8.3	0-20%
рН	GN66306	TC68548-1	su	8.70	8.70	0.0	0-20%

Associated Samples: Batch GN66305: TC68548-1, TC68548-2 Batch GN66306: TC68548-1, TC68548-2 Batch GP32496: TC68548-1, TC68548-2

(*) Outside of QC limits



### MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: TC68548 Account: APEXTTXD - APEX TITAN, Inc. Project: 7020112C079 / Stewart Creek

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Bromide	GP32496/GN66412	TC68635-2	mg/kg	0.0	72.1	91.9(a)	127.5N	80-120%
Chloride	GP32496/GN66412	TC68635-2	mg/kg	194	72.1	234(a)	55.5N	80-120%
Fluoride	GP32496/GN66412	TC68635-2	mg/kg	84.9	72.1	122(a)	51.5N	80-120%
Sulfate	GP32496/GN66412	TC68635-2	mg/kg	679	72.1	437(a)	-335.7(b)	80-120%

### Associated Samples:

- Batch GP32496: TC68548-1, TC68548-2 (*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits
- (a) Outside control limits due to matrix interference and/or sample nonhomogeneity.
- (b) Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information.



# 7.4

Page 1 of 1

# 7

## **General Chemistry CCB MDL Check**

Job Number: TC68548

Account: APEXTTXD APEX TITAN, Inc. Project: 7020112C079 / Stewart Creek

The following parameters are braketed by CCB's at or above the MDL.

Sample	Parameter	Run ID	Time	MDL	Units	CCB Before	CCB After

No CCB's found at or above MDL.