INTERIM REPORT

Visual Survey of Stewart Creek

Property:

Stewart Creek F.M. 423 to BNSF Railroad Bridge Frisco, Texas

> May 14, 2013 Project No. 0111C278A

> > Prepared for:

City of Frisco c/o Russell & Rodriguez, L.L.P. 1633 Williams Drive Building 2, Suite 200 Georgetown, TX 78628

Prepared by:

2351 W. Northwest Hwy., Suite 3321 Dallas, Texas 75220 Ph: (214) 350-5469 Fax: (214) 350-2914

May 14, 2013

Dallas, Texas 75220 Ph: (214) 350-5469 Fax: (214) 350-2914

City of Frisco c/o Russell & Rodriguez, L.L.P. 1633 Williams Drive Building 2, Suite 200 Georgetown, TX 78628 Attn : Mr. Kerry Russell

Re: Interim Report Visual Survey of Stewart Creek F.M. 423 to BNSF Railroad Bridge Frisco, Texas SWG Project No. 0111C278A

Dear Mr. Russell:

SWG is pleased to submit this interim report documenting the information collected during SWG's walking survey in Stewart Creek from March 28, 2013 to April 19, 2013. SWG's scope of work is being conducted in accordance with SWG's Proposal Number P0113C1098 dated March 26, 2013 (hereinafter, the "proposal").

Please note that this interim report documents SWG's observations in Stewart Creek. Since SWG's field activities are ongoing, this interim report does not represent a final report for the scope of services outlined in SWG's proposal.

We appreciate the opportunity to perform these services for the City of Frisco, c/o Russell & Rodriguez, L.L.P. Please contact either of the undersigned at (214) 350-5469 if you have questions regarding the information provided in the report.

Sincerely, SOUTHWEST GEOSCIENCE

Prepared by:

Jason T. Minter, P.G. Manager, Environmental Field Services

Enclosure

Reviewed by:

Rusty L. Simpson, P.G., C.P.G. Principal PROF

Environmental & Hydrogeologic Consultants

TABLE OF CONTENTS

Page No.

1.0	INTRODUCTION	1
2.0	FIELD ACTIVITIES	5
3.0	FINDINGS AND RECOMMENDATIONS	8

LIST OF APPENDICES

Appendix A:	Figure 1- Topographic Map
	Figure 2 – Stewart Creek Sediment Sample Points
	Figure 3 – Stewart Creek Northern Sediment Sample Points
Appendix B:	Key Map and Photographs
Appendix C:	Limited Site Investigation – Sediment Sampling of Stewart Creek
	Dated March 27, 2013

INTERIM REPORT

Visual Survey of Stewart Creek F.M. 423 to BNSF Railroad Bridge Frisco, Texas SWG Project No. 0111C278A May 14, 2013

1.0 INTRODUCTION

1.1 Site Description and Background

SWG has conducted a walking survey to identify and document the potential presence of visible battery chips and slag in Stewart Creek from Lake Lewisville east of F.M 423 to the western edge of the Burlington Northern Santa Fe (BNSF) railroad bridge in Frisco, Texas.

Based on property access limitations, SWG's walking survey excluded a portion of Stewart Creek located west of Legacy Drive and north of a high voltage utility easement located approximately 3,300 feet south of Stonebrook Parkway.

According the U.S. Army Corps of Engineers (USACE) website for Lewisville Lake (http://www.swf-wc.usace.army.mil/lewisville/Realestate/Feeland/index.asp), "{a}s a general rule, land around Lewisville Lake at an elevation of or below 535 feet is owned in fee by the U.S. Government." SWG's field activities included a visual survey of a segment of Stewart Creek in land potentially owned by the U.S. Federal Government generally terminating approximately 1.4 miles east of F.M 423.

Figure 1 presents the general boundaries and topography of the assessment area on the USGS topographic quadrangle maps of Frisco, Lewisville East and Hebron, Texas (Appendix A). For reference, the general location of the 535 feet above mean sea level contour line is depicted on Figure 1.

Several regulated facilities are located upstream and along the portion of Stewart Creek currently under evaluation. The following sections provide a brief overview of relevant regulatory history and potential sources of impact to Stewart Creek.

FORMER EXIDE TECHNOLOGIES, INC. FACILITY

The Former Exide Technologies, Inc. facility (Exide) is located east and upstream of the limit of SWG's current assessment area. Two tributaries of Stewart Creek flow through the former Exide facility, and portions of both of the natural channels of the tributaries have been altered in the past. Regulatory file reviews previously conducted by SWG for the former Exide facility have indicated that several remediation efforts have been implemented in Stewart Creek within the boundaries of the former Exide facility. These efforts were conducted in response to the documented presence of industrial impacts in Stewart Creek including the presence of slag and battery chips and elevated lead and cadmium concentrations in samples collected within and near the creek. In 1986 two dredging events were conducted to remove lead and cadmium impacted sediments from the creek channel. In 1999, 2,800 feet of Stewart Creek from old 5th Street going westward was remediated. The established cleanup levels for Stewart Creek were 91 mg/Kg (lead) and 4.23 mg/Kg (cadmium). The Texas Natural Resource Conservation Commission (TNRCC), predecessor to the Texas Commission on Environmental Quality (TCEQ),

Interim Report Visual Survey of Stewart Creek F.M. 423 to BNSF Railroad Bridge SWG Project No. 0111C278A May 14, 2013

approved the proposed cleanup levels in a letter dated August 31, 1999. The 1999 efforts included removal of visible blast furnace slag wastes from the bed and banks of Stewart Creek. The soils were then mechanically removed to a depth of approximately one-foot from the channel and banks of Stewart Creek. Deeper excavations of two to three feet were required in areas of denser slag. The excavated soils were screened to recover broken slag before placing in stockpiles (approximately 200 cubic yards per stockpile). The recovered slag was recycled at the former Exide facility by processing the slag for lead recovery through the on-site blast furnace. The remediation activities were conducted within the creek channel in 300- to 500-foot segments. Following the removal of impacted materials, three discrete verification samples were collected from each 100-foot interval along the creek to confirm that the cleanup levels were met. Areas that did not meet the criteria were excavated deeper and re-sampled until the verification samples determined that cleanup levels were achieved. The channel was then backfilled with clean on-site and imported soils as necessary to re-establish the grade of the creek bottom. A total of 9,823 cubic yards of excavated materials were disposed of as Class 2 Non-Hazardous waste. Of these, approximately 1,062 cubic yards required treatment to meet Class 2 Non-Hazardous waste classification criteria. A total of approximately 634 cubic vards of the excavated materials met the re-use criteria. A total of 521.3 tons of slag was recovered for use in the blast furnace.

The former Exide facility is currently undergoing investigation and assessment activities.

FORMER STEWART CREEK WASTEWATER TREATMENT PLANT (VCP No. 2122)

The former Stewart Creek Wastewater Treatment Plant (FSCWWTP) facility is located immediately adjacent to the west of the BNSF railroad, which is west of the former Exide facility. The FSCWWTP property boundary crosses Stewart Creek to the north with a small portion of the creek bank on the north side being a part of the overall property. The FSCWWTP was an active wastewater treatment plant from 1979 until 1999 and received wastewater from the City of Frisco including the former Exide facility. In addition, waste treatment activities were also conducted on the FSCWWTP site by GNB (a historical business name that was a predecessor to Exide) in the past. SWG was contracted by the City of Frisco to conduct investigation activities on the FSCWWTP facility beginning in 2005. In 2008, the FSCWWTP facility was entered into the TCEQ Voluntary Cleanup Program (VCP 2122). Under an agreement between the City of Frisco and Exide Technologies, Inc., Exide continued the remaining investigation and remediation efforts at the FCSCWWTP facility under review by the TCEQ VCP. An Affected Property Assessment Report (APAR) (containing a Screening Level Ecological Risk Assessment (SLERA) report) and Response Action Completion Report (RACR) were submitted to the TCEQ on April 1, 2013.

Based on the findings of the APAR and SLERA, sediment samples collected from the portion of Stewart Creek nearest the FSCWWTP indicated lead and cadmium concentrations in exceedance of the TCEQ Second Effects Levels for Ecological Receptors. The SLERA recommended "additional evaluation to address potential localized effects in sediment hot spot areas."

MUSEUM OF THE AMERICAN RAILROAD FACILITY (SWR#T2966)

The City of Frisco Museum of the American Railroad (MARR) site consists of an approximate 12acre property that is located southwest of Cotton Gin Road and the BNSF railroad in Frisco, Texas. The site was historically an undeveloped parcel of land and is located northwest of the Interim Report Visual Survey of Stewart Creek F.M. 423 to BNSF Railroad Bridge SWG Project No. 0111C278A May 14, 2013

former Exide plant. The southern boundary of the property abuts the FSCWWTP site, which is bisected by Stewart Creek further south of the site. Historical activities, including the potential construction of a full or partial road bed, apparently used "battery chips" for surface paving. Based on historical information pertaining to the discovery and remediation of battery chips from other areas within the City of Frisco, the suspected source of the battery chips is the former Exide (formerly GNB) battery recycling facility located southeast of the MARR facility. The battery chips likely resulted from the reclamation and recycling of lead acid batteries as part of the operations at the former Exide facility. The exact volume or timing of the placement or use of the battery chips is not documented, although battery chips are evident on the ground surface in several areas along the southern and eastern portions of the site, as well as in the southeastern portions of the site.

A Self Implementation Notice (SIN) was filed on September 28, 2011 to accommodate the expeditious assessment and removal of concentrated areas of battery chips along the former road, as well as associated soil impacts above applicable cleanup goals that may have occurred as a result of their placement on the site. An additional assessment of aerial photographs was conducted in which a historical road was observed trending along the southern and southeastern portion of the site, from Cotton Gin Road, and ultimately crossing over Stewart Creek. The presence of the potential historical road is significant as it is possible that the road was partially built up with battery chips, which were noted in the area of the potential historical road. A series of trenches were excavated to evaluate the potential presence of concentrated areas of battery chips along the former road observed in the historical aerials. While battery chips were observed in several trenches, some of which were observed at a specific depth (i.e., between 12 to 18 inches below grade surface), the results did not indicate the presence of concentrated battery chips along the entire road, and an area of focused assessment and corrective action efforts was established.

Based on the soil analytical results, only two chemicals of concern exceed their residential assessment levels (RALs) (arsenic and lead). Elevated levels of lead (up to 2,150 mg/Kg) were observed in the surface soils above the site-specific RAL of 250 mg/Kg in two locations. Arsenic was detected at levels slightly above the RAL of 24 mg/Kg in two areas; however, the representative concentration of arsenic within a one-eighth acre grid area was less than 24 mg/Kg based on additional sampling of grid locations and a statistical analysis.

Response actions were completed in 2011, resulting in a Remedy A, residential closure from the TCEQ. No further investigation or remediation was required by TCEQ in the MARR track area, or within Stewart Creek.

CITY OF FRISCO GRAND PARK AND GRAND LAKE PROJECT

In 2011, the City of Frisco contacted SWG regarding a planned development located west of the Dallas North Tollway and north of Stonebrook Parkway. Based on the above-referenced documented impacts and the potential presence of battery chips and slag in the proposed park area, the City of Frisco requested sediment sampling from the portion of Stewart Creek located within the proposed Grand Park Area. The conceptual development in 2011 included a series of lakes that were planned for construction by widening Stewart Creek in selected areas from the BNSF railroad bridge to Stonebrook Parkway. The following summarizes the results of SWG's investigation in 2011:

Limited Site Investigation – Sediment Sampling of Stewart Creek

SWG completed a Limited Site Investigation (LSI) for sediment sampling activities along Stewart Creek, at and along the proposed Grand Park project, from the eastern edge at the BNSF railroad bridge to Stonebrook Parkway in Frisco, Texas.

The objective of the LSI was to evaluate arsenic, cadmium, lead, selenium and sulfate concentrations along Stewart Creek in sediment samples collected from 30 sampling locations based on the layout of the proposed Grand Park project.

The findings and recommendations of the LSI were as follows:

- As part of the approved scope of work, eleven (11) sediment samples were collected between the BNSF railroad bridge and the Dallas North Tollway. Nineteen (19) sediment samples were collected between the Dallas North Tollway and Stonebrook Parkway.
- Sample locations were targeted in areas of soft sediment deposition/accumulation within the stream bed and documented using field GPS equipment. At each location, sediment samples were collected from the 0.0 to 0.5 foot depth interval; however, finer grained bed sediments were sampled preferentially over coarser grained bed sediments.
- The laboratory analytical results indicate that arsenic, cadmium, lead and sulfate concentrations were detected in each of the samples collected. Selenium concentrations were not detected above laboratory sample detection limits (SDLs).
- Based on the results of SWG's LSI, additional assessment is necessary to further evaluate the arsenic, cadmium and lead concentrations above the TCEQ ecological benchmarks and/or second effects levels for sediment and to further evaluate the presence of battery chips and potential slag observed during field activities.

SWG'S LSI is included with this report as Appendix C.

Figure 1 presents the general boundaries and topography of the assessment area on the USGS topographic quadrangle map of Frisco, Lewisville East and Hebron, Texas (Appendix A). A map depicting the sediment sampling points and analytical results previous sediment sampling activities is included as Figure 2 (Appendix A), and a map depicting the northern sediment sample points and analytical results during SWG's previous sediment sampling activities is included as Figure 3 (Appendix A).

1.2 Scope of Work

SWG conducted a walking survey of Stewart Creek, from Lewisville Lake east of F.M. 423 to the western edge of the BNSF railroad bridge in Frisco, Texas. The proposed scope of work was based on the request of the City of Frisco to identify and document the presence of visible battery chips and slag in Stewart Creek. This scope of work was conducted in accordance with SWG's Proposal Number P0113C1098 dated March 26, 2013.

It should be noted that the information contained in this interim report is based on the results of

ongoing field activities to complete the scope of services outlined in SWG's proposal. Subsequent to the completion of the walking survey, SWG will conduct additional sediment sampling activities between F.M. 423 and Stonebrook Parkway to supplement the existing sediment sample results. Since SWG's field activities are ongoing, this interim report does not represent a final report for the scope of services outlined in SWG's proposal.

1.3 Standard of Care

SWG's services were performed in accordance with standards customarily provided by a firm rendering the same or similar services in the area during the same time period. SWG makes no warranties, express or implied, as to the services performed hereunder. Additionally, SWG does not warrant the work of third parties supplying information used in the report (e.g. laboratories, regulatory agencies or other third parties). This scope of services was performed in accordance with the scope of work agreed with the client, as detailed in our proposal.

1.4 Additional Scope Limitations

Findings, conclusions and recommendations resulting from these services are based upon information derived from the on-site activities and other services performed under this scope of work and it should be noted that this information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, or not present during these services, and SWG cannot represent that the site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during SWG's performance of the scope of work outlined in the proposal. Environmental conditions at other areas or portions of the Site may vary from those encountered at actual sample locations. SWG's findings and recommendations are based solely upon data available to SWG at the time of these services.

1.5 Reliance

This report has been prepared for the exclusive use of the City of Frisco, and any authorization for use or reliance by any other party (except a governmental entity having jurisdiction over the site) is prohibited without the express written authorization of the City of Frisco and SWG. Any unauthorized distribution or reuse is at the client's sole risk. Notwithstanding the foregoing, reliance by authorized parties will be subject to the terms, conditions and limitations stated in the proposal, interim report, and SWG's Agreement. The limitation of liability defined in the agreement is the aggregate limit of SWG's liability to the client and all relying parties unless otherwise agreed in writing.

2.0 FIELD ACTIVITIES

2.1 Walking Survey

SWG's walking survey was conducted from March 28, 2013 to April 19, 2013 by Mr. Tommy Kim and Mr. Jason Minter, P.G., SWG environmental professionals.

SWG's walking survey was initiated near Lewisville Lake east of F.M. 423 and progressed upstream, terminating at the BNSF railroad bridge east of Dallas North Tollway. The walking survey was conducted over several separate days due to weather events. In addition, due to

access restrictions, SWG's walking survey excluded a portion of Stewart Creek located west of Legacy Drive and north of a high voltage utility easement located approximately 3,300 feet south of Stonebrook Parkway.

The walking survey was limited to the creek channel, banks and potential erosional features along the bank where battery chips may have been placed historically as fill or road base material.

SWG's survey team utilized GPS equipment and digital cameras to document the potential presence of visible battery chips and slag in the channel sediments in and along the banks of Stewart Creek. The survey team walked through the creek and along the banks during relatively low (clear) water conditions to evaluate the presence of battery chips or potential slag within the creek and on banks. GPS coordinates were collected for individual pieces of battery chips or slag when encountered. If concentrated areas of battery chips or slag were encountered, the survey team recorded the locations in the GPS equipment. Select photographs of SWG's field observations along with a key map depicting the assessment area and the locations where the photographs were collected are provided as Appendix B.

Stewart Creek from Lewisville Lake to Stonebrook Parkway

SWG began the walking survey east of F.M. 423 near Lewisville Lake. The creek appeared to have been channelized in the area and was relatively deep. SWG evaluated the banks of the creek for approximately 1,200 feet until the survey team could enter the creek.

The first occurrence of potential slag material was observed in sediment approximately 3,200 feet east of F.M. 423. The material was black, vesicular and approximately 1 inch in diameter. A photograph of the suspected slag material is provided in a photograph corresponding to point 2 on the key map in Appendix B. The next occurrence of potential slag material was not observed in the creek sediments until approximately 1.25 miles east of F.M. 423 and 1,550 feet south of Lebanon Road; however, it should also be noted that this portion of the creek exhibited thicker sediment deposition than the upstream areas. Photographs of the suspected slag material in this area are presented at locations 6, 7 and 8 on the key map. Additionally, a 55-gallon steel drum was observed in the creek channel north of the wastewater treatment plant. The drum was not in good condition, and did not have any identifying marks or features to indicate its origin. The drum appeared to be rusted out on the bottom and contained sediment. A photograph of the drum is provided as location 9 on the key map.

The first observed occurrence of a battery chip encountered in Stewart Creek was approximately 1,200 feet east of 4th Army Memorial Road, northeast of the North Central Texas Municipal Water District wastewater treatment plant. A potential slag fragment was also observed in the vicinity of the battery chip. SWG's walking survey progressed to the high voltage utility easement representing the southern portion of the excluded area. Battery chips or potential slag material were not encountered in the remaining portions of Stewart Creek from location of the battery chip and potential slag to the utility easement. SWG's survey team exited the creek channel south of the utility easement and walked through City of Frisco property to return to the wastewater treatment plant. Along the way, SWG's survey team observed battery chips at the surface in two separate areas. Photographs of the battery chips are presented at locations 11, 12 and 13 on the key map in Appendix B.

SWG's survey team resumed creek channel observations east of the excluded segment of

Stewart Creek at Legacy Drive. Single occurrences of battery chips were observed in four separate areas and potential slag was observed with the battery chips in two of areas between Legacy Drive and Stonebrook Parkway. Photographs of the battery chips and potential slag are presented at locations 14 through 18 on the key map in Appendix B.

Stewart Creek from Stonebrook Parkway to Dallas North Tollway (Grand Park)

Single occurrences of battery chips and potential slag along with concentrated areas of battery chips and potential slag were observed in Stewart Creek north of Stonebrook Parkway on the Grand Park area. For field documentation purposes, areas where three or more occurrences of battery chips or potential slag material were readily observed in a depositional area or bank were designated as concentrated areas.

Four occurrences single battery chips and eight occurrences of concentrated battery chips and/or potential slag material were observed in the creek channel from the Stonebrook Parkway bridge to 750 feet north of Stonebrook Parkway.

Ten occurrences of concentrated battery chips and/or slag and six occurrences of single battery chips were observed from approximately 1,000 feet north of Stonebrook Parkway to approximately 1,900 feet north of Stonebrook Parkway. Within this segment, two areas containing numerous battery chips were encountered in the bank walls of the creek. Photographs of the battery chips observed in the creek bank walls are presented at locations 28 through 34 on the key map in Appendix B.

Two occurrences of concentrated battery chips, seven occurrences of single battery chips and one occurrence of potential slag were observed in a segment beginning approximately 2,130 feet north of Stonebrook Parkway extending north and east approximately 1,250 linear feet. Within this segment, a broken concrete creek crossing was encountered. Battery chips and brick were observed in the base material beneath the concrete surface. Additionally, a battery chip was observed apparently embedded in the concrete at the base of the concrete surface. Photographs of the concrete creek crossing and battery chip observed within the concrete are presented as points 42 and 43 on the key map in Appendix B.

Four occurrences of concentrated battery chips and potential slag material were observed in the Stewart Creek channel in a segment beginning approximately 250 feet west of the Dallas North Tollway bridge and back east to the bridge. A representative photograph of the battery chips observed in this segment is presented as point 49 on the key map in Appendix B.

Stewart Creek from Dallas North Tollway to BNSF Railroad Bridge

Two areas of concentrated of battery chips, a battery chip and a piece of potential slag were observed in the creek channel beneath the Dallas North Tollway bridge to approximately 100 feet east of the bridge. Representative photographs of the potential slag and battery chips are presented as points 51 through 53 on the key map.

Concentrated areas of battery chips and potential slag were observed in the final segment surveyed from the Dallas North Tollway bridge approximately 750 feet east of the Dallas North Tollway bridge to the BNSF railroad bridge. Additionally, battery chips were observed along the northern banks of this segment. In the vicinity of the BNSF railroad bridge, numerous occurrences of battery chips (including one battery chip containing a post) and concentrations

of larger potential slag material were observed. Representative photographs of the battery chips and potential slag observed in this segment are presented as points 54 through 57 on the key map in Appendix B.

2.2 Sediment Sampling

Subsequent to the completion of the walking survey, SWG will conduct additional sediment sampling activities between F.M. 423 and Stonebrook Parkway to supplement the existing sediment sample results.

Sediment samples will be collected from Stewart Creek in general accordance with the Texas Commission on Environmental Quality (TCEQ) *Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods (RG-415),* revised August 2012. Sample locations will be targeted in areas of soft sediment deposition/accumulation within the stream bed and in areas of concentrated battery chips/potential slag based on the results of SWG's visual survey.

The results of SWG's sediment sampling and visual survey activities and will be documented in a final report in accordance with SWG's proposal.

3.0 FINDINGS AND RECOMMENDATIONS

The objective of the proposed scope of services was to identify and document the presence of visible battery chips and slag in Stewart Creek from Lewisville Lake east of F.M. 423 to the BNSF railroad bridge. This scope of work was conducted in accordance with SWG's Proposal Number P0113C1098 dated March 26, 2013.

It should be noted that the information contained in this interim report is based on the results of SWG's ongoing field activities to complete the scope of services outlined in SWG's proposal. Subsequent to the completion of the walking survey, SWG will conduct additional sediment sampling activities between F.M. 423 and Stonebrook Parkway to supplement the existing sediment sample results. Since SWG's field activities are ongoing, this interim report does not represent a final report for the scope of services outlined in SWG's proposal.

The findings and recommendations of this investigation are as follows:

- Regulatory file reviews previously conducted by SWG for the former Exide facility have indicated that several remediation efforts have been implemented in Stewart Creek within the boundaries of the former Exide facility. These efforts were conducted in response to the documented presence of industrial impacts in Stewart Creek including the presence of slag and battery chips and elevated lead and cadmium concentrations in samples collected within and near the creek.
- Based on the findings of the APAR and SLERA prepared for the Former Stewart Creek Wastewater Treatment Plant, sediment samples collected from the portion of Stewart Creek nearest the FSCWWTP indicated lead and cadmium concentrations in exceedance of the TCEQ Second Effects Levels for Ecological Receptors. The SLERA recommended "additional evaluation to address potential localized effects in sediment hot spot areas."

- Historical activities at the MARR facility, including the potential construction of a full or partial road bed, apparently used "battery chips" for surface paving. Based on historical information pertaining to the discovery and remediation of battery chips from other areas within the City of Frisco, the suspected source of the battery chips is the former Exide (formerly GNB) battery recycling facility located southeast of the MARR facility.
- Battery chips and potential slag was observed in sediment in Stewart Creek. Frequent occurrences of concentrated battery chips and potential slag material were observed in the Stewart Creek channel in Grand Park from Stonebrook Parkway to the Dallas North Tollway bridge. In the vicinity of the BNSF railroad bridge, numerous occurrences of battery chips (including one battery chip containing a post) and concentrations of larger potential slag material were observed.
- Based on the results of SWG's visual survey, additional assessment is necessary to further evaluate the arsenic, cadmium and lead concentrations above the TCEQ ecological benchmarks and/or second effects levels for sediment and to further evaluate the presence of battery chips and potential slag observed during field activities.
- Following completion of SWG's investigation, and submittal of a final report to the City of Frisco, it is recommended that the City of Frisco, Exide, TCEQ, EPA, and USACE collaborate to determine how to best remediate the waste and contaminated environmental media.

APPENDIX A

Figures

Stewart Creek Sediment Sampling Frisco, Collin County, Texas

Southwest

SWG Project No. 0111C278A

Figure 1 Topographic Map Frisco, Lewisville East and Hebron Texas Quadrangles Contour Interval = 10 Feet 1981

APPENDIX B

Key Map and Photographs

Stewart Creek Sediment Sampling Frisco, Collin County, Texas

SWG Project No. 0111C278A

1. Representative view of creek channel.

2. Potential slag.

6. Potential slag.

3. Representative view of creek channel and sediment.

8. Potential slag.

9. Abandoned corroded drum containing sediment.

10. General view of depositional area in the creek.

11. Battery chips located under trees near a residential neighborhood. This area contained multiple battery chips.

13. Battery chip located in an open field near a residential neighborhood.

16. View of a battery chip located in the creek.

14. Potential slag.

18. Battery chip.

17. Potential slag.

19. Battery chip.

20. Battery chips.

22. Battery chip.

23. Battery chips.

25. Potential slag.

26. Battery chips.

28. Area of battery chips along the wall.

29. Close up view of battery chip in the creek bank wall.

33. Battery chip on a creek bank wall.

31. Battery chip in the wall.

32. Battery chips on the creek bank wall.

36. Battery chips.

35. Potential slag.

37. Battery chips.

38. Battery chip.

40. Battery chip.

41. Battery chip.

43. View of a battery chip embedded in the concrete surface of the bridge.

44. Battery chips in the creek.

46. Battery chip and potential slag under water in the creek.

47. Battery chip.

50. Typical view of the creek and depositional areas.

52. Battery chip.

53. Battery chip.

55. Potential slag.

56. Battery post.

57. Potential slag.

APPENDIX C

Limited Site Investigation – Sediment Sampling of Stewart Creek Dated March 27, 2013

LIMITED SITE INVESTIGATION Sediment Sampling of Stewart Creek

Property:

Stewart Creek BNSF Railroad Bridge to Stonebrook Parkway Frisco, Texas

March 27, 2013 Project No. 0111278

Prepared for:

City of Frisco C/O Russell & Rodriguez, L.L.P. 1633 Williams Drive Building 2, Suite 200 Georgetown, TX 78628

Prepared by:

2351 W. Northwest Hwy., Suite 3321 Dallas, Texas 75220 Ph: (214) 350-5469 Fax: (214) 350-2914

March 27, 2013

City of Frisco c/o Russell & Rodriguez, L.L.P. 1633 Williams Drive Building 2, Suite 200 Georgetown, TX 78628 Attn : Mr. Kerry Russell

Re: Limited Site Investigation Sediment Sampling of Stewart Creek BNSF Railroad Bridge to Stonebrook Parkway Frisco, Texas SWG Project No. 0111278

Dear Mr. Russell:

SWG is pleased to submit this Limited Site Investigation (LSI) report for the above-referenced Site. This investigation was performed in accordance with SWG's Proposal Number 01111316 dated September 21, 2011.

We appreciate the opportunity to perform these services for the City of Frisco, c/o Russell & Rodriguez, L.L.P. Please contact either of the undersigned at (214) 350-5469 if you have questions regarding the information provided in the report.

Sincerely, SOUTHWEST GEOSCIENCE

Prepared by:

Jason T. Minter, P.G. Manager, Environmental Field Services

Enclosure

TABLE OF CONTENTS

Page No.

ODUCTION1	1.0
D ACTIVITIES2	2.0
ORATORY ANALYTICAL METHODS	3.0
A EVALUATION	4.0
INGS AND RECOMMENDATIONS	5.0

LIST OF APPENDICES

Appendix A:	Figure 1- Topographic Map
	Figure 2 - Site Map
Appendix B:	Photographs
Appendix C:	Table
Appendix D:	Laboratory Data Reports and Chain-of-Custody Documentation

LIMITED SITE INVESTIGATION

Sediment Sampling of Stewart Creek BNSF Railroad Bridge to Stonebrook Parkway Frisco, Texas SWG Project No. 0111278 March 27, 2013

1.0 INTRODUCTION

1.1 Site Description

SWG has completed a Limited Site Investigation (LSI) for sediment sampling activities along Stewart Creek, at and along the proposed Grand Park project, from the eastern edge at the BNSF railroad bridge to Stonebrook Parkway in Frisco, Texas.

A topographic map is included as Figure 1, and a Site Map is included as Figure 2, Appendix A.

1.2 Scope of Work

SWG conducted sediment sampling activities in Stewart Creek, from the eastern edge at the BNSF railroad bridge to Stonebrook Parkway in Frisco, Texas. The proposed scope of work was based on the request of the City of Frisco for sediment sampling and analysis along the proposed Grand Park project as shown on the attached Figure 1. This investigation was requested to evaluate chemicals of concern in sediment in the vicinity of the Grand Park project.

The objective of the proposed scope of services was to evaluate arsenic, cadmium, lead, selenium and sulfate concentrations along Stewart Creek in sediment samples collected from 30 sampling locations based on the layout of the proposed Grand Park project. This scope of work was performed in accordance with SWG's Proposal Number 01111316 dated September 21, 2011.

1.3 Standard of Care

SWG's services were performed in accordance with standards customarily provided by a firm rendering the same or similar services in the area during the same time period. SWG makes no warranties, express or implied, as to the services performed hereunder. Additionally, SWG does not warrant the work of third parties supplying information used in the report (e.g. laboratories, regulatory agencies or other third parties). This scope of services was performed in accordance with the scope of work agreed with the client, as detailed in our proposal.

1.4 Additional Scope Limitations

Findings, conclusions and recommendations resulting from these services are based upon information derived from the on-site activities and other services performed under this scope of work and it should be noted that this information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, or not present during these services, and SWG cannot represent that the site contains no hazardous substances, toxic materials,

petroleum products, or other latent conditions beyond those identified during this LSI. Environmental conditions at other areas or portions of the Site may vary from those encountered at actual sample locations. SWG's findings, and recommendations are based solely upon data available to SWG at the time of these services.

1.5 Reliance

This report has been prepared for the exclusive use of the City of Frisco, and any authorization for use or reliance by any other party (except a governmental entity having jurisdiction over the site) is prohibited without the express written authorization of the City of Frisco and SWG. Any unauthorized distribution or reuse is at the client's sole risk. Notwithstanding the foregoing, reliance by authorized parties will be subject to the terms, conditions and limitations stated in the proposal, LSI report, and SWG's Agreement. The limitation of liability defined in the agreement is the aggregate limit of SWG's liability to the client and all relying parties unless otherwise agreed in writing.

2.0 FIELD ACTIVITIES

As part of this LSI, sediment samples were collected from 30 total sampling locations based on the layout of the proposed Grand Park project, as shown on Figure 1. Sample collection activities were divided into two phases. The first phase was performed between the BNSF railroad bridge and the Dallas North Tollway. The second phase of sediment sampling was performed west of the Dallas North Tollway, along the proposed area of the Grand Park project. The sediment sampling activities were concentrated in depositional areas along Stewart Creek and conducted in general accordance with the Texas Commission on Environmental Quality (TCEQ) *Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods (RG-415)*, dated December 2003.

2.1 Sediment Sampling

SWG's LSI field activities were conducted from November 17, 2011 to November 18, 2011 by Mr. Tommy Kim, Mr. John Koehnen and Mr. Jason Minter, P.G., SWG environmental professionals. As part of the approved scope of work, Eleven (11) sediment samples were collected between the BNSF railroad bridge and the Dallas North Tollway bridge. Nineteen (19) sediment samples were collected between the Dallas North Tollway and Stonebrook Parkway. The sediment sample locations were designated SC-SED-1 (west of the BNSF railroad bridge) through SC-SED-30 (north of Stonebrook Parkway).

Sample locations were targeted in areas of soft sediment deposition/accumulation within the depositional features and documented using field GPS equipment. At each location, sediment samples were collected from the 0.0 to 0.5 foot depth interval; however, finer grained bed sediments were sampled preferentially over coarser grained bed sediments.

Figure 1 presents the general boundaries and topography of the Site on the USGS topographic quadrangle map of Frisco, Texas (Appendix A). A Site Map is included as Figure 2 (Appendix A).

Sediment samples were collected using a decontaminated split core sampler. Sampling equipment was cleaned using an Alconox[®] wash and potable water rinse prior to the beginning of the project and before collecting each sediment sample.

Battery chips were observed in the creek channel in two locations north of Stonebrook Parkway in the vicinity of SC SED-30 and SC SED-26. Additionally, potential slag was observed in the creek channel in the vicinity of the Dallas North Tollway bridge. Representative photographs of sediment sample locations including photographs of battery chips and potential slag are included as Appendix B.

2.2 Sediment Sampling Program

Sediment samples were collected and placed in laboratory prepared glassware, sealed with custody tape and placed on ice in a cooler which was secured with a custody seal. The sample coolers and completed chain-of-custody forms were relinquished to ERMI's analytical laboratory in Allen, Texas for normal turnaround.

3.0 LABORATORY ANALYTICAL METHODS

The sediment samples were analyzed for arsenic, cadmium, lead and selenium utilizing EPA Method SW-846#6010B and sulfate utilizing EPA Method 300.0.

Laboratory results are summarized in the tables included in Appendix B. The executed chainof-custody form and laboratory data sheets are provided in Appendix C.

4.0 DATA EVALUATION

SWG compared the arsenic, cadmium, lead and selenium concentrations detected in the sediment samples to the freshwater sediment benchmarks and second effects levels for sediment referenced in the TCEQ guidance document *Update to Guidance for Conducting Ecological Risk Assessments at Remediation Sites in Texas RG-263 (Revised)*, dated January 2006. Based on SWG's review, the TCEQ has not established ecological benchmarks or second effects levels for selenium or sulfate.

<u>Arsenic</u>

The arsenic concentrations detected in the sediment samples ranged from 8.10 mg/Kg in SC-SED-18 to 47.2 mg/Kg in SC-SED-8. Arsenic concentrations detected in sediment at each location with the exception of SC-SED-18 exceeded the TCEQ ecological benchmark for sediment of 9.79 mg/Kg. SC-SED-8 exceeded the TCEQ second effects level for arsenic of 33 mg/Kg.

<u>Cadmium</u>

The cadmium concentrations detected in the sediment samples ranged from 0.43 mg/Kg in SC-SED-18 to 4.16 mg/Kg in SC-SED-9. Cadmium concentrations detected in sediment at eighteen locations exceeded the TCEQ ecological benchmark for sediment of 0.99 mg/Kg; however, none of the detected sediment concentrations exceeded the TCEQ second effects level for cadmium of 4.98 mg/Kg.

<u>Lead</u>

The lead concentrations detected in the sediment samples ranged from 20.5 mg/Kg in SC-SED-18 to 397 mg/Kg in SC-SED-5. The lead concentrations at seventeen locations exceeded the TCEQ ecological benchmark for sediment of 35.8 mg/Kg. Lead concentrations at SC-SED-5, SC-SED-6 and SC-SED-9 also exceeded the TCEQ second effects level for lead of 128 mg/Kg.

<u>Selenium</u>

Selenium concentrations were not detected above the laboratory sample detection limits (SDLs). The TCEQ has not established an ecological benchmark or a second effects level for selenium in sediment.

<u>Sulfate</u>

The sulfate concentrations detected in the sediment samples ranged from 31.0 mg/Kg in SC-SED-21 to 241 mg/Kg in SC-SED-5. The TCEQ has not established an ecological benchmark or a second effects level for sulfate in sediment.

5.0 FINDINGS AND RECOMMENDATIONS

The objective of the proposed scope of services was to evaluate arsenic, cadmium, lead, selenium and sulfate concentrations along Stewart Creek in sediment samples collected from 30 sampling locations based on the layout of the proposed Grand Park project. The scope of work was performed in accordance with SWG's Proposal Number 01111316 dated September 21, 2011.

The findings and recommendations of this investigation are as follows:

- As part of the approved scope of work, Eleven (11) sediment samples were collected between the BNSF railroad bridge and the Dallas North Tollway. Nineteen (19) sediment samples were collected between the Dallas North Tollway and Stonebrook Parkway.
- Sample locations were targeted in areas of soft sediment deposition/accumulation within the stream bed and documented using field GPS equipment. At each location, sediment samples were collected from the 0.0 to 0.5 foot depth interval; however, finer grained bed sediments were sampled preferentially over coarser grained bed sediments.
- The laboratory analytical results indicate that arsenic, cadmium, lead and sulfate concentrations were detected in each of the samples collected. Selenium concentrations were not detected above laboratory SDLs.
- Based on the results of SWG's LSI, additional assessment is necessary to further evaluate the arsenic, cadmium and lead concentrations above the TCEQ ecological benchmarks and/or second effects levels for sediment and to further evaluate the presence of battery chips and potential slag observed during field activities.

APPENDIX A

Figures

SWG Project No. 0111278

Topographic Map Frisco & Hebron Texas Quadrangle Contour Interval = 10 Feet 1981

Ν Legend Sediment Sample Locations (11/2011) 550 Feet Figure 2 Site Map Stewart Creek Sediment **Sampling Locations** November 2011

Sediment Sampling of Stewart Creek

SWG Project No. 0111278

APPENDIX B

Photographs

1.) Photo of Stewart Creek in the vicinity of sediment sample SC-SED 4.

November 18, 2011

2.) Photo of Stewart Creek in the vicinity of sediment sample SC-SED 7.

November 17, 2011

Southwest

3.) Photo of Stewart Creek in the vicinity of sediment sample SC-SED 13.

November 18, 2011

4.) Photo of Stewart Creek in the vicinity of sediment sample SC-SED 19.

November 18, 2011

Southwest

5.) Photo of Stewart Creek in the vicinity of sediment sample SC-SED 23.

November 18, 2011

6.) Photo of battery chips under water on top of sediment in Stewart Creek.

November 18, 2011

7.) Photo of Stewart Creek in the vicinity of sediment sample SC-SED 28.

November 18, 2011

8.) Representative photos of battery chips on a gravel deposit in Stewart Creek.

November 18, 2011

APPENDIX C

Table

TABLE 1											
	METALS and SULFATE SEDIMENT ANALYTICAL RESULTS										
	Stewart Creek East and West of the Dallas North Tollway										
Frisco, Texas											
Sample I.D.	Sample Date	Depth (feet)	Arsenic (mg/Kg)	Cadmium (mg/Kg)	Lead (mg/Kg)	Selenium (mg/Kg)	Sulfate				
TRRP Ecologic	l al Benchmarks	for Sediment	9.79	0.99	35.8	NE	NE				
TCEQ Second	Effects Levels	for Sediment	33	4.98	128	NE	NE				
TRRP Human Health Sediment Protective Concentration Levels			110	1,100	500	2,700	NE				
SC-SED-1	11/18/11	0-0.5	11.9	0.61	38.2	<1.09	39.3				
SC-SED-2	11/18/11	0-0.5	11.2	0.75	46.9	<1.15	87.8				
SC-SED-3	11/18/11	0-0.5	18.6	2.01	63.8	<1.06	85.5				
SC-SED-4	11/18/11	0-0.5	12.0	0.95	39.1	<1.09	69.8				
SC-SED-5	11/17/11	0-0.5	14.4	0.90	397	<1.20	241				
SC-SED-6	11/17/11	0-0.5	16.2	1.05	307	<1.08	55.0				
SC-SED-7	11/17/11	0-0.5	16.1	0.54	35.6	<1.07	60.2				
SC-SED-8	11/17/11	0-0.5	47.2	0.96	35.2	<1.10	52.7				
SC-SED-9	11/17/11	0-0.5	20.5	4.16	162	<1.06	43.1				
SC-SED-10	11/17/11	0-0.5	12.3	0.72	22.5	<1.01	45.0				
SC-SED-11	11/17/11	0-0.5	29.4	1.11	46.8	<1.02	38.2				
SC-SED-12	11/18/11	0-0.5	11.3	0.79	56.7	<1.26	172				
SC-SED-13	11/18/11	0-0.5	31.1	0.84	33.7	<1.00	58.3				
SC-SED-14	11/18/11	0-0.5	12.7	0.79	27.7	<0.97	48.2				
SC-SED-15	11/18/11	0-0.5	12.9	1.54	35.3	<1.01	58.0				
SC-SED-16	11/18/11	0-0.5	14.6	1.49	59.0	<1.00	35.6				
SC-SED-17	11/18/11	0-0.5	18.3	1.19	43.1	<0.97	40.2				
SC-SED-18	11/18/11	0-0.5	8.10	0.43	20.5	<0.91	190				
SC-SED-19	11/18/11	0-0.5	19.5	1.47	37.6	<1.18	93.0				
SC-SED-20	11/18/11	0-0.5	17.4	1.07	38.5	<1.03	54.2				
SC-SED-21	11/18/11	0-0.5	18.0	2.19	49.5	<0.96	31.0				
SC-SED-22	11/18/11	0-0.5	19.2	2.01	53.2	<0.93	78.5				
SC-SED-23	11/18/11	0-0.5	16.1	3.69	34.2	<1.15	190				
SC-SED-24	11/18/11	0-0.5	32.1	2.00	49.5	<1.03	39.8				
SC-SED-25	11/18/11	0-0.5	15.1	1.03	21.6	<1.07	45.0				
SC-SED-26	11/17/11	0-0.5	16.5	0.87	30.1	<1.07	66.3				
SC-SED-27	11/17/11	0-0.5	14.3	1.09	31.8	<1.00	54.1				
SC-SED-28	11/18/11	0-0.5	14.1	1.23	29.0	<0.96	63.0				
SC-SED-29	11/18/11	0-0.5	18.2	1.75	35.9	<1.00	37.2				
SC-SED-30	11/18/11	0-0.5	18.5	2.41	31.3	<0.98	58.9				

mg/Kg - milligrams/Kilogram

(j) - Denotes an estimated value between the laboratory sample detection limit (SDL) and the laboratory method detection limit (MDL).

Shading indicates a concentration above the TRRP Ecological Benchmark for Sediment

Bold and shading indicates a concentration above the TCEQ Second Effects Level

Benchmarks obtained from the TCEQ guidance document Update to Guidance for Conducting Ecological Risk Assessments at Remediation Sites in Texas RG-263 (Revised), dated January 2006.

< - Not detected above laboratory SDL.

N/A - Not Applicable

NE - Not Established

APPENDIX D

Laboratory Data Reports and Chain-of-Custody Documentation

Environmental Laboratories Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013 State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Report of Sample Analysis

Southwest Geoscience	Page: Page 1 of 26
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/29/11 16:54

Attached is our analytical report for the samples received for your project. Below is a list of your individual sample descriptions with our corresponding laboratory number. We also have enclosed a copy of the Chain of Custody that was received with your samples and a form documenting the condition of your samples upon arrival. Please note any unused portion of the samples may be discarded upon expiration of the EPA holding time for the analysis performed or after 30 days from the above report date, unless you have requested otherwise.

ERMI Environmental Laboratories certifies that all results contained in this report were produced in accordance with the requirements of the National Environmental Laboratory Accreditation Program (NELAP) unless otherwise noted. The results presented apply to the samples analyzed in accordance with the chain-of-custody document(s) furnished with the samples. This report is intended for the sole use of the customer for whom the work was performed and must be reproduced, without modification, in its entirety.

Laboratory ID #	Client Sample ID	Matrix	Sampled Date/Time	Received Date/Time
1111546-01	SC-SED 11	Solid	11/17/11 14:56	11/18/11 17:05
1111546-02	SC-SED 10	Solid	11/17/11 15:25	11/18/11 17:05
1111546-03	SC-SED 9	Solid	11/17/11 15:38	11/18/11 17:05
1111546-04	SC-SED 8	Solid	11/17/11 15:56	11/18/11 17:05
1111546-05	SC-SED 7	Solid	11/17/11 16:47	11/18/11 17:05
1111546-06	SC-SED 6	Solid	11/17/11 17:05	11/18/11 17:05
1111546-07	SC-SED 5	Solid	11/17/11 17:26	11/18/11 17:05
1111546-08	SC-SED 30	Solid	11/18/11 10:50	11/18/11 17:05
1111546-09	SC-SED 29	Solid	11/18/11 11:25	11/18/11 17:05
1111546-10	SC-SED 28	Solid	11/18/11 11:40	11/18/11 17:05
1111546-11	SC-SED 27	Solid	11/18/11 13:30	11/18/11 17:05
1111546-12	SC-SED 26	Solid	11/18/11 13:40	11/18/11 17:05
1111546-13	SC-SED 25	Solid	11/18/11 14:00	11/18/11 17:05
1111546-14	SC-SED 24	Solid	11/18/11 14:05	11/18/11 17:05
1111546-15	SC-SED 23	Solid	11/18/11 15:00	11/18/11 17:05
1111546-16	SC-SED 22	Solid	11/18/11 15:20	11/18/11 17:05
1111546-17	SC-SED 21	Solid	11/18/11 15:30	11/18/11 17:05
1111546-18	SC-SED 20	Solid	11/18/11 15:40	11/18/11 17:05
1111546-19	SC-SED 19	Solid	11/18/11 15:50	11/18/11 17:05

Sample Identification

TRRP Rpt 5 - v.2.5-071510

Environmental Laboratories Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013 State Certifications Arkansas: 88-0647 Oklahoma: 8727

(nelap)

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Report of Sample Analysis

Southwest Geoscience	Page: Pa	age 2 of 26	6
2351 W. Northwest Hwy, Suite 3321	Project:	SC Sedim	ent Sampling
Dallas, TX 75220	Project #:	011127	8
ATTN: Liz Scaggs	Print Date/T	ïme:	11/29/11 16:54

The analytical data and results contained in this report, as well as their supporting data, conform with Texas Risk Reduction Program (TRRP), 30 TAC, Section 350, requirements and are of sufficient and documented quality to meet both TRRP objectives, TCEQ regulatory guidance No. RG-366/TRRP-13 and the project-based objective of achieving the lowest method detection limit (i.e., the TRRP Critical PCL where reasonably achievable or, if not reasonably achievable, the MQL). All information concerning analytical parameters, methods and protocols that might bear upon or otherwise affect the accuracy of the analytical data in this report have been provided or otherwise disclosed herein. The data were obtained using applicable and appropriate EPA SW-846 or Texas Commission on Environmental Quality approved analytical protocols, methodologies and quality assurance/quality control standards. **ERMI Environmental Laboratories** certifies that its quality control program is substantially and materially consistent with the International Organization for Standardization "Guide 25: General Requirements the Competence of Calibration and Testing Laboratories (ISO 25 3rd Edition, 1990)," as amended or the quality standards outlined in the National Environmental Laboratory Accreditation Program, as amended. The entire analytical data package for this report, including the supporting quality control data, will be retained and maintained for at least five (5) years (or such longer period of time as may be required by TRRP) from the report date at the offices of **ERMI Environmental Laboratories**, **400 W. Bethany, Suite 190, Allen, Texas 75013.**

I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Thank you for the opportunity to serve your environmental chemistry analysis needs. If you have any questions or concerns regarding this report please contact our Customer Service Department at the phone number below.

Respectfully submitted,

Sall K. Brown

Kendall K. Brown President

TRRP Rpt 5 - v.2.5-071510

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Page: Page 3 of 26
Project: SC Sediment Sampling
Project #: 0111278
Print Date/Time: 11/29/11 16:54

Laboratory ID #: 1111546-01 Sample Description SC-SED 11	<u>Sample Type</u> Grab	<u>Matrix</u> Solid <u>Sample Date/Time</u> 11/17/11 1456					Sample Collected By Jason Minter/John Koehnan/Tommy Kim			Customer		
Analyte(s)	Result	SDL	MQL	Units	F*	Inst	Batch	Analysis Date/Time	Anlst	Flag		
Conventional Chemistr	y Parameters, EPA 3	00.0		•								
Sulfate (Total) as SO4	38.2	1.22	1	mg/kg dry	1.00	12	1K21052	11/21/11 2207	ANM			
Conventional Chemistr	y Parameters, SM 25	40G										
% Solids	82	0.040	0.2	%	1.00	W3	1K22006	11/22/11 1125	KTF			
Metals (Total), EPA 305	0B											
Acid Digestion of Sludges/Solids	Completed	N/A	N/A	-	52.08	DB1	1K28039	11/28/11 0821	MDG			
Metals (Total), EPA 601	0B											
Arsenic	29.4	0.40	0.25	mg/kg dry	5.21	M4	1K28039	11/28/11 2050	SPS	Q-21, R-01		
Cadmium	1.11	0.47	0.221	mg/kg dry	5.21	M4	1K28039	11/28/11 2050	SPS	R-01, J		
Lead	46.8	0.89	0.42	mg/kg dry	5.21	M4	1K28039	11/28/11 2050	SPS	Q-21, R-01		
Selenium	ND	1.02	0.4	mg/kg dry	5.21	M4	1K28039	11/28/11 2050	SPS	R-01		

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Southwest Geoscience	Page: Page 4 of 26
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/29/11 16:54

Laboratory ID #: 1111546-02 Sample Description SC-SED 10	<u>Sample Type</u> Grab	<u>Matrix</u> Solid <u>Sample Date/Time</u> 11/17/11 1525				Sample Collected By Jason Minter/John Koehnan/Tommy Kim					
Analyte(s)	Result	SDL	MQL	Units	F*	Inst	Batch	Analysis Date/Time	Anlst	Flag	
Conventional Chemistry	y Parameters, EPA 3	00.0	•	•					-		
Sulfate (Total) as SO4	45.0	1.27	1	mg/kg dry	1.00	12	1K21052	11/21/11 2223	ANM		
Conventional Chemistry	y Parameters, SM 25	40G									
% Solids	79	0.040	0.2	%	1.00	W3	1K22006	11/22/11 1125	KTF		
Metals (Total), EPA 305	0B										
Acid Digestion of Sludges/Solids	Completed	N/A	N/A	-	49.50	DB1	1K28039	11/28/11 0821	MDG		
Metals (Total), EPA 601	0B										
Arsenic	12.3	0.40	0.25	mg/kg dry	4.95	M4	1K28039	11/28/11 2058	SPS	R-01	
Cadmium	0.72	0.47	0.221	mg/kg dry	4.95	M4	1K28039	11/28/11 2058	SPS	R-01, J	
Lead	22.5	0.88	0.42	mg/kg dry	4.95	M4	1K28039	11/28/11 2058	SPS	R-01	
Selenium	ND	1.01	0.4	mg/kg dry	4.95	M4	1K28039	11/28/11 2058	SPS	R-01	

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Southwest Geoscience	Page: Page 5 of 26
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/29/11 16:54
tony ID #: Sampla Typa	

Laboratory ID #: 1111546-03 Sample Description SC-SED 9	<u>Sample Type</u> Grab	<u>Matrix</u> Solid <u>Sample Date/Time</u> 11/17/11 1538					Sample Collected By Jason Minter/John Koehnan/Tommy Kim			ner
Analyte(s)	Result	SDL	MQL	Units	F*	Inst	Batch	Analysis Date/Time	Anlst	Flag
Conventional Chemistry	/ Parameters, EPA 3	.00.0								
Sulfate (Total) as SO4	43.1	1.30	1	mg/kg dry	1.00	12	1K21052	11/21/11 2240	ANM	
Conventional Chemistry	/ Parameters, SM 25	40G								
% Solids	77	0.040	0.2	%	1.00	W3	1K22006	11/22/11 1125	KTF	
Metals (Total), EPA 305	0B									
Acid Digestion of Sludges/Solids	Completed	N/A	N/A	-	51.02	DB1	1K28039	11/28/11 0821	MDG	
Metals (Total), EPA 601	0B									
Arsenic	20.5	0.42	0.25	mg/kg dry	5.10	M4	1K28039	11/28/11 2106	SPS	R-01
Cadmium	4.16	0.49	0.221	mg/kg dry	5.10	M4	1K28039	11/28/11 2106	SPS	R-01
Lead	162	0.93	0.42	mg/kg dry	5.10	M4	1K28039	11/28/11 2106	SPS	R-01
Selenium	ND	1.06	0.4	mg/kg dry	5.10	M4	1K28039	11/28/11 2106	SPS	R-01

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Southwest Geoscience	Page: Page 6 of 26
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/29/11 16:54
abaratory ID #	

Laboratory ID #: 1111546-04 Sample Description SC-SED 8	<u>Sample Type</u> Grab	<u>Matrix</u> Solid <u>Sample Date/Time</u> 11/17/11 1556					Sample Collected By Jason Minter/John Koehnan/Tommy Kim			
Analyte(s)	Result	SDL	MQL	Units	F*	Inst	Batch	Analysis Date/Time	Anlst	Flag
Conventional Chemist	ry Parameters, EPA 3	00.0	1						•	
Sulfate (Total) as SO4	52.7	1.36	1	mg/kg dry	1.00	12	1K21052	11/21/11 2345	ANM	
Conventional Chemist	ry Parameters, SM 25	40G								
% Solids	74	0.040	0.2	%	1.00	W3	1K22006	11/22/11 1125	KTF	
Metals (Total), EPA 309 Acid Digestion of Sludges/Solids	50B Completed	N/A	N/A	-	50.51	DB1	1K28039	11/28/11 0821	MDG	
Metals (Total), EPA 60 ⁴	10B									
Arsenic	47.2	0.43	0.25	mg/kg dry	5.05	M4	1K28039	11/28/11 2134	SPS	R-01
Cadmium	0.96	0.51	0.221	mg/kg dry	5.05	M4	1K28039	11/28/11 2134	SPS	R-01, J
Lead	35.2	0.96	0.42	mg/kg dry	5.05	M4	1K28039	11/28/11 2134	SPS	R-01
Selenium	ND	1.10	0.4	mg/kg dry	5.05	M4	1K28039	11/28/11 2134	SPS	R-01

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Southwest Geoscience	Page: Page 7 of 26
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/29/11 16:54
abaratary ID #: Sample Type	

Laboratory ID #: 1111546-05 Sample Description SC-SED 7	<u>Sample Type</u> Grab	<u>Matrix</u> Solid <u>Sample Date/Time</u> 11/17/11 1647					<u>Sample (</u> Jason Mir Koehnan/	ıer		
Analyte(s)	Result	SDL	MQL	Units	F*	Inst	Batch	Analysis Date/Time	Anlst	Flag
Conventional Chemistry	y Parameters, EPA 3	.00.0							•	
Sulfate (Total) as SO4	60.2	1.38	1	mg/kg dry	1.00	12	1K21052	11/22/11 0002	ANM	
Conventional Chemistry	y Parameters, SM 25	40G								
% Solids	72	0.040	0.2	%	1.00	W3	1K22006	11/22/11 1125	KTF	
Metals (Total), EPA 305 Acid Digestion of Sludges/Solids	0B Completed	N/A	N/A	-	48.54	DB1	1K28039	11/28/11 0821	MDG	
Metals (Total), EPA 601	0B									
Arsenic	16.1	0.42	0.25	mg/kg dry	4.85	M4	1K28039	11/28/11 2142	SPS	R-01
Cadmium	0.54	0.50	0.221	mg/kg dry	4.85	M4	1K28039	11/28/11 2142	SPS	R-01, J
Lead	35.6	0.94	0.42	mg/kg dry	4.85	M4	1K28039	11/28/11 2142	SPS	R-01
Selenium	ND	1.07	0.4	mg/kg dry	4.85	M4	1K28039	11/28/11 2142	SPS	R-01

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Southwest Geoscience	Page: Page 8 of 26
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/29/11 16:54
Laboratory ID #: Sample Type	

<u>Laboratory ID #:</u> 1111546-06 <u>Sample Description</u> SC-SED 6	<u>Sample Type</u> Grab		<u>Matrix</u> Solid <u>Sample Date/Time</u> 11/17/11 1705					Sample Collected By Jason Minter/John Koehnan/Tommy Kim			
Analyte(s)	Result	SDL	MQL	Units	F*	Inst	Batch	Analysis Date/Time	Anlst	Flag	
Conventional Chemistr	ry Parameters, EPA 3	00.0	1						•		
Sulfate (Total) as SO4	55.0	1.38	1	mg/kg dry	1.00	12	1K21052	11/22/11 0018	ANM		
Conventional Chemistr	ry Parameters, SM 25	40G									
% Solids	72	0.040	0.2	%	1.00	W3	1K22006	11/22/11 1125	KTF		
Metals (Total), EPA 305 Acid Digestion of Sludges/Solids	50B Completed	N/A	N/A	-	49.02	DB1	1K28039	11/28/11 0821	MDG		
Metals (Total), EPA 601	10B										
Arsenic	16.2	0.43	0.25	mg/kg dry	4.90	M4	1K28039	11/28/11 2151	SPS	R-01	
Cadmium	1.05	0.50	0.221	mg/kg dry	4.90	M4	1K28039	11/28/11 2151	SPS	R-01, J	
Lead	307	0.95	0.42	mg/kg dry	4.90	M4	1K28039	11/28/11 2151	SPS	R-01	
Selenium	ND	1.08	0.4	mg/kg dry	4.90	M4	1K28039	11/28/11 2151	SPS	R-01	

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Southwest Geoscience	Page: Page 9 of 26
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/29/11 16:54
Laboratory ID #: Sample Type	

<u>Laboratory 10 #.</u> 1111546-07 <u>Sample Description</u> SC-SED 5	<u>Sample Type</u> Grab		<u>Matrix</u> Solid <u>Sample Date/Time</u> 11/17/11 1726					Sample Collected By Jason Minter/John Koehnan/Tommy Kim			
Analyte(s)	Result	SDL	MQL	Units	F*	Inst	Batch	Analysis Date/Time	Anlst	Flag	
Conventional Chemistr	y Parameters, EPA 3	0.00		•							
Sulfate (Total) as SO4	241	1.44	1	mg/kg dry	1.00	12	1K21052	11/22/11 0051	ANM		
Conventional Chemistr	y Parameters, SM 25	540G									
% Solids	69	0.040	0.2	%	1.00	W3	1K22006	11/22/11 1125	KTF		
Metals (Total), EPA 305 Acid Digestion of Sludges/Solids	0B Completed	N/A	N/A	-	52.08	DB1	1K28039	11/28/11 0821	MDG		
Metals (Total), EPA 601	0B										
Arsenic	14.4	0.47	0.25	mg/kg dry	5.21	M4	1K28039	11/28/11 2159	SPS	R-01	
Cadmium	0.90	0.56	0.221	mg/kg dry	5.21	M4	1K28039	11/28/11 2159	SPS	R-01, J	
Lead	397	1.05	0.42	mg/kg dry	5.21	M4	1K28039	11/28/11 2159	SPS	R-01	
Selenium	ND	1.20	0.4	mg/kg dry	5.21	M4	1K28039	11/28/11 2159	SPS	R-01	

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Southwest Geoscience	Page: F	Page 10 of 2	6
2351 W. Northwest Hwy, Suite 3321	Project:	SC Sedime	ent Sampling
Dallas, TX 75220	Project #:	0111278	3
ATTN: Liz Scaggs	Print Date/	Time:	11/29/11 16:54

Laboratory ID #: 1111546-08 Sample Description SC-SED 30	<u>Sample Type</u> Grab	<u>Matrix</u> Solid <u>Sample Date/Time</u> 11/18/11 1050					Sample Collected By Jason Minter/John Koehnan/Tommy Kim			her
Analyte(s)	Result	SDL	MQL	Units	F*	Inst	Batch	Analysis Date/Time	Anlst	Flag
Conventional Chemistr	y Parameters, EPA 3	0.0	•	•						
Sulfate (Total) as SO4	58.9	1.23	1	mg/kg dry	1.00	12	1K21052	11/22/11 0107	ANM	
Conventional Chemistr	y Parameters, SM 25	40G								
% Solids	81	0.040	0.2	%	1.00	W3	1K22006	11/22/11 1125	KTF	
Metals (Total), EPA 305	0B									
Acid Digestion of Sludges/Solids	Completed	N/A	N/A	-	49.50	DB1	1K28039	11/28/11 0821	MDG	
Metals (Total), EPA 601	0B									
Arsenic	18.5	0.39	0.25	mg/kg dry	4.95	M4	1K28039	11/28/11 2206	SPS	R-01
Cadmium	2.41	0.45	0.221	mg/kg dry	4.95	M4	1K28039	11/28/11 2206	SPS	R-01
Lead	31.3	0.86	0.42	mg/kg dry	4.95	M4	1K28039	11/28/11 2206	SPS	R-01
Selenium	ND	0.98	0.4	mg/kg dry	4.95	M4	1K28039	11/28/11 2206	SPS	R-01

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Southwest Geoscience	Page: Page 11 of 26
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/29/11 16:54

Laboratory ID #: 1111546-09 Sample Description SC-SED 29	<u>Sample Type</u> Grab		<u>Matrix</u> Solid <u>Sample Date/Time</u> 11/18/11 1125					Sample Collected By Jason Minter/John Koehnan/Tommy Kim			:	
Analyte(s)	Result	SDL	MQL	Units	F*	Inst	Batch	Analysis Date/Time	Anlst	Flag		
Conventional Chemistry	y Parameters, EPA 3	00.0	•						•			
Sulfate (Total) as SO4	37.2	1.25	1	mg/kg dry	1.00	12	1K21052	11/22/11 0124	ANM			
Conventional Chemistry	y Parameters, SM 25	40G										
% Solids	80	0.040	0.2	%	1.00	W3	1K22006	11/22/11 1125	KTF			
Metals (Total), EPA 305	0B											
Acid Digestion of Sludges/Solids	Completed	N/A	N/A	-	50.00	DB1	1K28039	11/28/11 0821	MDG			
Metals (Total), EPA 601	0B											
Arsenic	18.2	0.39	0.25	mg/kg dry	5.00	M4	1K28039	11/28/11 2214	SPS	R-01		
Cadmium	1.75	0.46	0.221	mg/kg dry	5.00	M4	1K28039	11/28/11 2214	SPS	R-01		
Lead	35.9	0.87	0.42	mg/kg dry	5.00	M4	1K28039	11/28/11 2214	SPS	R-01		
Selenium	ND	1.00	0.4	mg/kg dry	5.00	M4	1K28039	11/28/11 2214	SPS	R-01		

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Southwest Geoscience	Page: Page 12 of 26
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/29/11 16:54

Laboratory ID #: 1111546-10 Sample Description SC-SED 28	<u>Sample Type</u> Grab		<u>Matrix</u> Solid <u>Sample Date/Time</u> 11/18/11 1140					Sample Collected By Jason Minter/John Koehnan/Tommy Kim			
Analyte(s)	Result	SDL	MQL	Units	F*	Inst	Batch	Analysis Date/Time	Anist	Flag	
Conventional Chemist	ry Parameters, EPA 3	0.00	•			-			•		
Sulfate (Total) as SO4	63.0	1.22	1	mg/kg dry	1.00	12	1K21052	11/22/11 0156	ANM		
Conventional Chemist	ry Parameters, SM 25	540G									
% Solids	82	0.040	0.2	%	1.00	W3	1K22006	11/22/11 1125	KTF		
Metals (Total), EPA 30	50B										
Acid Digestion of Sludges/Solids	Completed	N/A	N/A	-	49.50	DB1	1K28039	11/28/11 0821	MDG		
Metals (Total), EPA 601	10B										
Arsenic	14.1	0.38	0.25	mg/kg dry	4.95	M4	1K28039	11/28/11 2222	SPS	R-01	
Cadmium	1.23	0.45	0.221	mg/kg dry	4.95	M4	1K28039	11/28/11 2222	SPS	R-01, J	
Lead	29.0	0.84	0.42	mg/kg dry	4.95	M4	1K28039	11/28/11 2222	SPS	R-01	
Selenium	ND	0.96	0.4	mg/kg dry	4.95	M4	1K28039	11/28/11 2222	SPS	R-01	

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Southwest Geoscience	Page: Page 13 of 26
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/29/11 16:54

Laboratory ID #: 1111546-11 Sample Description SC-SED 27	<u>Sample Type</u> Grab	<u>Matrix</u> Solid <u>Sample Date/Time</u> 11/18/11 1330					<u>Sample (</u> Jason Mir Koehnan/	Customer		
Analyte(s)	Result	SDL	MQL	Units	F*	Inst	Batch	Analysis Date/Time	Anlst	Flag
Conventional Chemistr	y Parameters, EPA 3	.00	1							
Sulfate (Total) as SO4	54.1	1.22	1	mg/kg dry	1.00	12	1K21052	11/22/11 0213	ANM	
Conventional Chemistr	y Parameters, SM 25	40G								
% Solids	82	0.040	0.2	%	1.00	W3	1K22006	11/22/11 1125	KTF	
Metals (Total), EPA 305 Acid Digestion of Sludges/Solids	0B Completed	N/A	N/A	-	51.02	DB1	1K28039	11/28/11 0821	MDG	
Metals (Total), EPA 601	0B									
Arsenic	14.3	0.39	0.25	mg/kg dry	5.10	M4	1K28039	11/28/11 2230	SPS	Q-20, Q-22, R-01
Cadmium	1.09	0.46	0.221	mg/kg dry	5.10	M4	1K28039	11/28/11 2230	SPS	R-01, J
Lead	31.8	0.87	0.42	mg/kg dry	5.10	M4	1K28039	11/28/11 2230	SPS	Q-21, Q-22, R-01
Selenium	ND	1.00	0.4	mg/kg dry	5.10	M4	1K28039	11/28/11 2230	SPS	R-01

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Southwest Geoscience	Page: Page 14 of 26	
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling	
Dallas, TX 75220	Project #: 0111278	
ATTN: Liz Scaggs	Print Date/Time: 11/29/11 16:5	64
iony ID #: Sample Type		

Laboratory ID #: 1111546-12 Sample Description SC-SED 26	<u>Sample Type</u> Grab	<u>Matrix</u> Solid <u>Sample Date/Time</u> 11/18/11 1340					<u>Sample (</u> Jason Mir Koehnan/	<u>Collected By</u> iter/John Tommy Kim	Customer		
Analyte(s)	Result	SDL	MQL	Units	F*	Inst	Batch	Analysis Date/Time	Anlst	Flag	
Conventional Chemistry	/ Parameters, EPA 3	.00.0	1						•		
Sulfate (Total) as SO4	66.3	1.33	1	mg/kg dry	1.00	12	1K21052	11/22/11 0229	ANM		
Conventional Chemistry	/ Parameters, SM 25	40G									
% Solids	75	0.040	0.2	%	1.00	W3	1K22006	11/22/11 1125	KTF		
Metals (Total), EPA 305)B										
Acid Digestion of Sludges/Solids	Completed	N/A	N/A	-	50.51	DB1	1K28039	11/28/11 0821	MDG		
Metals (Total), EPA 601)B										
Arsenic	16.5	0.42	0.25	mg/kg dry	5.05	M4	1K28039	11/28/11 2238	SPS	R-01	
Cadmium	0.87	0.50	0.221	mg/kg dry	5.05	M4	1K28039	11/28/11 2238	SPS	R-01, J	
Lead	30.1	0.94	0.42	mg/kg dry	5.05	M4	1K28039	11/28/11 2238	SPS	R-01	
Selenium	ND	1.07	0.4	mg/kg dry	5.05	M4	1K28039	11/28/11 2238	SPS	R-01	

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Southwest Geoscience	Page: Page 15 of 26
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/29/11 16:54

Laboratory ID #: 1111546-13 Sample Description SC-SED 25	<u>Sample Type</u> Grab	<u>Matrix</u> Solid <u>Sample Date/Time</u> 11/18/11 1400					Sample Collected By Jason Minter/John Koehnan/Tommy Kim			
Analyte(s)	Result	SDL	MQL	Units	F*	Inst	Batch	Analysis Date/Time	Anist	Flag
Conventional Chemistr	y Parameters, EPA 3	00.0							•	
Sulfate (Total) as SO4	45.0	1.28	1	mg/kg dry	1.00	12	1K21052	11/22/11 0335	ANM	
Conventional Chemistr	y Parameters, SM 25	40G								
% Solids	78	0.040	0.2	%	1.00	W3	1K22006	11/22/11 1125	KTF	
Metals (Total), EPA 305	0B									
Acid Digestion of Sludges/Solids	Completed	N/A	N/A	-	52.08	DB1	1K28039	11/28/11 0821	MDG	
Metals (Total), EPA 601	0B									
Arsenic	15.1	0.42	0.25	mg/kg dry	5.21	M4	1K28039	11/28/11 2246	SPS	R-01
Cadmium	1.03	0.49	0.221	mg/kg dry	5.21	M4	1K28039	11/28/11 2246	SPS	R-01, J
Lead	21.6	0.93	0.42	mg/kg dry	5.21	M4	1K28039	11/28/11 2246	SPS	R-01
Selenium	ND	1.07	0.4	mg/kg dry	5.21	M4	1K28039	11/28/11 2246	SPS	R-01

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Southwest Geoscience	Page: Pa	age 16 of 20	6
2351 W. Northwest Hwy, Suite 3321	Project:	SC Sedime	ent Sampling
Dallas, TX 75220	Project #:	0111278	3
ATTN: Liz Scaggs	Print Date/T	ime:	11/29/11 16:54

Laboratory ID #: 1111546-14 Sample Description SC-SED 24	<u>Sample Type</u> Grab	<u>Matrix</u> Solid <u>Sample Date/Time</u> 11/18/11 1405					Sample Collected By Jason Minter/John Koehnan/Tommy Kim			her
Analyte(s)	Result	SDL	MQL	Units	F*	Inst	Batch	Analysis Date/Time	Anist	Flag
Conventional Chemistr	y Parameters, EPA 3	00.0	•						•	
Sulfate (Total) as SO4	39.8	1.25	1	mg/kg dry	1.00	12	1K21052	11/22/11 0351	ANM	
Conventional Chemistr	y Parameters, SM 25	40G								
% Solids	80	0.040	0.2	%	1.00	W3	1K22006	11/22/11 1125	KTF	
Metals (Total), EPA 305	0B									
Acid Digestion of Sludges/Solids	Completed	N/A	N/A	-	51.55	DB1	1K28039	11/28/11 0821	MDG	
Metals (Total), EPA 601	0B									
Arsenic	32.1	0.41	0.25	mg/kg dry	5.15	M4	1K28039	11/28/11 2315	SPS	R-01
Cadmium	2.00	0.48	0.221	mg/kg dry	5.15	M4	1K28039	11/28/11 2315	SPS	R-01
Lead	49.5	0.90	0.42	mg/kg dry	5.15	M4	1K28039	11/28/11 2315	SPS	R-01
Selenium	ND	1.03	0.4	mg/kg dry	5.15	M4	1K28039	11/28/11 2315	SPS	R-01

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Southwest Geoscience	Page: Page 17 of 26
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/29/11 16:54

Laboratory ID #: 1111546-15 Sample Description SC-SED 23		<u>Matrix</u> Solid <u>Sample Date/Time</u> 11/18/11 1500					Sample Collected By Jason Minter/John Koehnan/Tommy Kim				
Analyte(s)	Result	SDL	MQL	Units	F*	Inst	Batch	Analysis Date/Time	Anlst	Flag	
Conventional Chemistr	y Parameters, EPA 3	0.00	•	•							
Sulfate (Total) as SO4	190	1.38	1	mg/kg dry	1.00	12	1K21052	11/22/11 0408	ANM		
Conventional Chemistr	y Parameters, SM 25	40G									
% Solids	73	0.040	0.2	%	1.00	W3	1K22006	11/22/11 1125	KTF		
Metals (Total), EPA 305	0B										
Acid Digestion of Sludges/Solids	Completed	N/A	N/A	-	52.08	DB1	1K28039	11/28/11 0821	MDG		
Metals (Total), EPA 601	0B										
Arsenic	16.1	0.45	0.25	mg/kg dry	5.21	M4	1K28039	11/28/11 2330	SPS	R-01	
Cadmium	3.69	0.53	0.221	mg/kg dry	5.21	M4	1K28039	11/28/11 2330	SPS	R-01	
Lead	34.2	1.00	0.42	mg/kg dry	5.21	M4	1K28039	11/28/11 2330	SPS	R-01	
Selenium	ND	1.15	0.4	mg/kg dry	5.21	M4	1K28039	11/28/11 2330	SPS	R-01	

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Southwest Geoscience	Page: Page 18 of 26
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/29/11 16:54

Laboratory ID #: 1111546-16 Sample Description SC-SED 22	<u>Sample Type</u> Grab	<u>Matrix</u> Solid <u>Sample Date/Time</u> 11/18/11 1520					<u>Sample (</u> Jason Mir Koehnan/	<u>Collected By</u> hter/John Tommy Kim	Customer		
Analyte(s)	Result	SDL	MQL	Units	F*	Inst	Batch	Analysis Date/Time	Anlst	Flag	
Conventional Chemistry	/ Parameters, EPA 3	00.0	1			· · · · · ·					
Sulfate (Total) as SO4	78.5	1.18	1	mg/kg dry	1.00	12	1K21052	11/22/11 0440	ANM		
Conventional Chemistry	/ Parameters, SM 25	40G									
% Solids	85	0.040	0.2	%	1.00	W3	1K22006	11/22/11 1125	KTF		
Metals (Total), EPA 3050)B										
Acid Digestion of Sludges/Solids	Completed	N/A	N/A	-	49.50	DB1	1K28039	11/28/11 0821	MDG		
Metals (Total), EPA 6010)B										
Arsenic	19.2	0.37	0.25	mg/kg dry	4.95	M4	1K28039	11/28/11 2337	SPS	R-01	
Cadmium	2.01	0.43	0.221	mg/kg dry	4.95	M4	1K28039	11/28/11 2337	SPS	R-01	
Lead	53.2	0.82	0.42	mg/kg dry	4.95	M4	1K28039	11/28/11 2337	SPS	R-01	
Selenium	ND	0.93	0.4	mg/kg dry	4.95	M4	1K28039	11/28/11 2337	SPS	R-01	

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Southwest Geoscience	Page: Page 19 of 26
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/29/11 16:54

Laboratory ID #: 1111546-17 Sample Description SC-SED 21	<u>Sample Type</u> Grab		<u>Matr</u> Solio <u>Sam</u> 11/1	<u>ix</u> d ip <u>le Date/Tir</u> 8/11 1530	<u>ne</u>	Sample Collected By Jason Minter/John Koehnan/Tommy Kim					
Analyte(s)	Result	SDL	MQL	Units	F*	Inst	Batch	Analysis Date/Time	Anist	Flag	
Conventional Chemistr	y Parameters, EPA 3	00.0	•						•		
Sulfate (Total) as SO4	31.0	1.19	1	mg/kg dry	1.00	12	1K21052	11/22/11 0457	ANM		
Conventional Chemistr	y Parameters, SM 25	40G									
% Solids	84	0.040	0.2	%	1.00	W3	1K22006	11/22/11 1125	KTF		
Metals (Total), EPA 305	0B										
Acid Digestion of Sludges/Solids	Completed	N/A	N/A	-	50.51	DB1	1K28039	11/28/11 0821	MDG		
Metals (Total), EPA 601	0B										
Arsenic	18.0	0.38	0.25	mg/kg dry	5.05	M4	1K28039	11/28/11 2346	SPS	R-01	
Cadmium	2.19	0.44	0.221	mg/kg dry	5.05	M4	1K28039	11/28/11 2346	SPS	R-01	
Lead	49.5	0.84	0.42	mg/kg dry	5.05	M4	1K28039	11/28/11 2346	SPS	R-01	
Selenium	ND	0.96	0.4	mg/kg dry	5.05	M4	1K28039	11/28/11 2346	SPS	R-01	

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Southwest Geoscience	Page: Page 20 of 26
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/29/11 16:54

Laboratory ID #: 1111546-18 Sample Description SC-SED 20	<u>Sample Type</u> Grab		<u>Matı</u> Solio <u>Sam</u> 11/1	r <u>ix</u> d n <u>ple Date/Tir</u> 8/11 1540	Sample Collected By Jason Minter/John Koehnan/Tommy Kim					
Analyte(s)	Result	SDL	MQL	Units	F*	Inst	Batch	Analysis Date/Time	Anist	Flag
Conventional Chemistr	ry Parameters, EPA 3	0.00	•						•	
Sulfate (Total) as SO4	54.2	1.29	1	mg/kg dry	1.00	12	1K21052	11/22/11 0513	ANM	
Conventional Chemistr	ry Parameters, SM 25	40G								
% Solids	77	0.040	0.2	%	1.00	W3	1K22006	11/22/11 1125	KTF	
Metals (Total), EPA 305	50B									
Acid Digestion of Sludges/Solids	Completed	N/A	N/A	-	50.00	DB1	1K28039	11/28/11 0821	MDG	
Metals (Total), EPA 601	10B									
Arsenic	17.4	0.41	0.25	mg/kg dry	5.00	M4	1K28039	11/28/11 2354	SPS	R-01
Cadmium	1.07	0.48	0.221	mg/kg dry	5.00	M4	1K28039	11/28/11 2354	SPS	R-01, J
Lead	38.5	0.91	0.42	mg/kg dry	5.00	M4	1K28039	11/28/11 2354	SPS	R-01
Selenium	ND	1.03	0.4	mg/kg dry	5.00	M4	1K28039	11/28/11 2354	SPS	R-01

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Southwest Geoscience	Page: Page 21 of 26
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/29/11 16:54

<u>Laboratory ID #:</u> 1111546-19 <u>Sample Description</u> SC-SED 19	<u>Sample Type</u> Grab		<u>Matı</u> Solio <u>Sarr</u> 11/1	r <u>ix</u> d n <u>ple Date/Tir</u> 8/11 1550	Sample Collected By Jason Minter/John Koehnan/Tommy Kim						
Analyte(s)	Result	SDL	MQL	Units	F*	Inst	Batch	Analysis Date/Time	Anist	Flag	
Conventional Chemist	ry Parameters, EPA 3		1						•		
Sulfate (Total) as SO4	93.0	1.47	1	mg/kg dry	1.00	12	1K21052	11/22/11 0546	ANM		
Conventional Chemist	ry Parameters, SM 25	540G									
% Solids	68	0.040	0.2	%	1.00	W3	1K22006	11/22/11 1125	KTF		
Metals (Total), EPA 30	50B										
Acid Digestion of Sludges/Solids	Completed	N/A	N/A	-	50.00	DB1	1K28039	11/28/11 0821	MDG		
Metals (Total), EPA 60 ⁻	10B										
Arsenic	19.5	0.46	0.25	mg/kg dry	5.00	M4	1K28039	11/29/11 0002	SPS	R-01	
Cadmium	1.47	0.55	0.221	mg/kg dry	5.00	M4	1K28039	11/29/11 0002	SPS	R-01, J	
Lead	37.6	1.03	0.42	mg/kg dry	5.00	M4	1K28039	11/29/11 0002	SPS	R-01	
Selenium	ND	1.18	0.4	mg/kg dry	5.00	M4	1K28039	11/29/11 0002	SPS	R-01	

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Report of Sample Analysis

Southwest Geoscience	Page: Page 22 of 26
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/29/11 16:54

Conventional Chemistry Parameters - Quality Control

Analyte(s)	Result	*SDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Blank (1K21052-BLK1)			· · · ·			•				
Prepared: 11/21/11 09:13 Ar	nalyzed: 11/21/11 20:12									
Sulfate (Total) as SO4	ND	1.00	mg/kg wet							
Laboratory Control Sample Prepared: 11/21/11 09:13 Ar	(1K21052-BS1) nalyzed: 11/21/11 20:28									
Sulfate (Total) as SO4	48.4	1.00	mg/kg wet	50.0		97	90-110			
Laboratory Control Sample Prepared: 11/21/11 09:13 Ar	Duplicate (1K21052-BSD nalyzed: 11/21/11 20:45	1)								
Sulfate (Total) as SO4	48.2	1.00	mg/kg wet	50.0		96	90-110	0.4	20	
Matrix Spike (1K21052-MS1) Prepared: 11/21/11 09:13 Ar) 1X nalyzed: 11/21/11 21:01			S	Source: 1111493-0	1				
Sulfate (Total) as SO4	15900	101	mg/kg dry	5050	11000	96	90-110			
Matrix Spike (1K21052-MS2) Prepared: 11/21/11 09:13 Ar	1X nalyzed: 11/22/11 06:02			S	Source: 1111546-1	1				
Sulfate (Total) as SO4	117	1.36	mg/kg dry	68.0	54.1	92	90-110			
Matrix Spike Duplicate (1K2 Prepared: 11/21/11 09:13 Ar	1052-MSD1) 1X nalyzed: 11/21/11 21:18			s	Source: 1111493-0	1				
Sulfate (Total) as SO4	15900	101	mg/kg dry	5050	11000	97	90-110	0.1	20	
Matrix Spike Duplicate (1K2 Prepared: 11/21/11 09:13 Ar	1052-MSD2) 1X nalyzed: 11/22/11 06:19			s	Source: 1111546-1	1				
Sulfate (Total) as SO4	119	1.36	mg/kg dry	68.0	54.1	95	90-110	2	20	
Blank (1K22006-BLK1) Prepared & Analyzed: 11/22/	/11 11:25									
% Solids	ND	0.040	%							

<u>State Certifications</u> Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Report of Sample Analysis

Southwest Geoscience	Page:	Page 23 of	26
2351 W. Northwest Hwy, Suite 3321	Project:	SC Sedir	ment Sampling
Dallas, TX 75220	Project #:	01112	78
ATTN: Liz Scaggs	Print Date	e/Time:	11/29/11 16:54

Conventional Chemistry Parameters - Quality Control

Analyte(s)	Result	*SDI	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Duplicate (1K22006-DUP1) Prepared & Analyzed: 11/22/11 11:25				s	ource: 1111546	-01				
% Solids	77	0.040	%		82			6	7	
Duplicate (1K22006-DUP2) Prepared & Analyzed: 11/22/11 11:25				s	ource: 1111546	-11				
% Solids	79	0.040	%		82			3	7	

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Report of Sample Analysis

Southwest Geoscience	Page: Page 24 of 26
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/29/11 16:54

Metals (Total) - Quality Control

		*0.51	Lus I	Spike	Source		%REC	RPD	RPD	Flag
Analyte(s)	I Result	*SDL	Units	Level	Result	/0REU	2000			l idg
Blank (1K28039-BLK1) Prepared & Analyzed: 11/28/11	08:21									
Acid Digestion of Sludges/Solids	Completed	N/A	-							
Arsenic	ND	0.06	mg/kg wet							
Cadmium	ND	0.07	mg/kg wet							
Lead	ND	0.14	mg/kg wet							
Selenium	ND	0.16	mg/kg wet							
Laboratory Control Sample (1K Prepared & Analyzed: 11/28/11	28039-BS1) 08:21									
Acid Digestion of Sludges/Solids	Completed	N/A	-				0-0			
Arsenic	23.0	0.06	mg/kg wet	24.5		94	80-120			
Cadmium	23.9	0.07	mg/kg wet	24.5		97	80-120			
Lead	22.0	0.14	mg/kg wet	24.5		90	80-120			
Selenium	44.3	0.16	mg/kg wet	49.0		90	80-120			
Laboratory Control Sample Du Prepared & Analyzed: 11/28/11	plicate (1K28039-BSI 08:21	01)								
Acid Digestion of Sludges/Solids	Completed	N/A	-				0-0		0	
Arsenic	23.9	0.06	mg/kg wet	25.0		96	80-120	4	20	
Cadmium	24.9	0.07	mg/kg wet	25.0		100	80-120	4	20	
Lead	23.1	0.14	mg/kg wet	25.0		92	80-120	5	20	
Selenium	46.4	0.16	mg/kg wet	50.0		93	80-120	5	20	
Matrix Spike (1K28039-MS1) Prepared & Analyzed: 11/28/11	08:21				Source: 1111540	6-01				
Acid Digestion of Sludges/Solids	Completed	N/A	-		ND		0-0			
Arsenic	41.8	0.78	mg/kg dry	30.8	29.4	40	75-125			R-01, Q-02
Cadmium	28.9	0.91	mg/kg dry	30.8	1.11	90	75-125			R-01
Lead	67.0	1.73	mg/kg dry	30.8	46.8	65	75-125			Q-02, R-01
Selenium	48.2	1.97	mg/kg dry	61.7	ND	78	75-125			R-01

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Report of Sample Analysis

Page: Page 25 of 26
Project: SC Sediment Sampling
Project #: 0111278
Print Date/Time: 11/29/11 16:54

Metals (Total) - Quality Control

Analyte(s)	Result	*SDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Matrix Spike (1K28039-MS2) Prepared & Analyzed: 11/28/11	08.21				Source: 111154	6-11				
Acid Digestion of Sludges/Solids	Completed	N/A	-		ND	0-11	0-0			
Arsenic	40.0	0.76	mg/kg dry	30.0	14.3	86	75-125			R-01
Cadmium	29.6	0.89	mg/kg dry	30.0	1.09	95	75-125			R-01
Lead	51.2	1.68	mg/kg dry	30.0	31.8	65	75-125			Q-02, R-01
Selenium	52.6	1.92	mg/kg dry	60.0	ND	88	75-125			R-01
Matrix Spike Duplicate (1K280) Prepared & Analyzed: 11/28/11	39-MSD1) 08:21			:	Source: 111154	6-01				
Acid Digestion of Sludges/Solids	Completed	N/A	-		ND		0-0		0	
Arsenic	42.3	0.79	mg/kg dry	31.5	29.4	41	75-125	1	20	Q-02, R-01
Cadmium	33.5	0.93	mg/kg dry	31.5	1.11	103	75-125	15	20	R-01
Lead	63.9	1.76	mg/kg dry	31.5	46.8	54	75-125	5	20	Q-02, R-01
Selenium	58.0	2.01	mg/kg dry	62.9	ND	92	75-125	18	20	R-01
Matrix Spike Duplicate (1K2803 Prepared & Analyzed: 11/28/11	39-MSD2) 08:21			:	Source: 111154	6-11				
Acid Digestion of Sludges/Solids	Completed	N/A	-		ND		0-0		0	
Arsenic	57.1	0.74	mg/kg dry	29.4	14.3	145	75-125	35	20	Q-02, Q-04, R-01
Cadmium	32.1	0.87	mg/kg dry	29.4	1.09	105	75-125	8	20	R-01
Lead	65.4	1.65	mg/kg dry	29.4	31.8	114	75-125	24	20	Q-04, R-01
Selenium	53.0	1.88	mg/kg dry	58.8	ND	90	75-125	0.8	20	R-01

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Report of Sample Analysis

Southwest Geoscience	Page: Page 26 of 26
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/29/11 16:54

Notes and Definitions

The results presented in this report were generated using those methods given in 40 CFR Part 136 for Water and Wastewater samples and in SW-846 for RCRA/Solid Waste samples.

This value is above the method detection limit but below the reporting limit.
The recovery of this analyte in the MS was outside the acceptable range due to interference, large dilutions required for analysis or a combination of these factors. The recovery of this analyte in the LCS(s) was within the acceptable range.
The RPD of this analyte between the MS(s) was outside of the acceptable range. The RPD of this same analyte between the LCS(s) was within the acceptable range.
The recovery of this analyte in the MS was higher than the acceptable range. This indicates a high bias to the result presented.
The recovery of this analyte in the MS was lower than the acceptable range. This indicates a low bias to the result presented.
The RPD between the MS(s) sample analyses was outside the acceptable range. This indicates the result was not as precise as expected.
The higher reporting limit is due to dilutions required for analysis as a result of a high concentration of target and/or non-target parameters in this sample.
Analyte NOT DETECTED at or above the reporting limit
Sample results reported on a dry weight basis
Laboratory Control Sample/Laboratory Control Sample Duplicate
Matrix Spike/Matrix Spike Duplicate
Relative Percent Difference
milligrams per kilogram
milligrams per liter
micrograms per kilogram
micrograms per liter
Not covered under scope of NELAP accreditation.
Calculated factor rounded to 3 significant figures. Concentration factor when <1.00 and dilution factor when >1.00.
Instrument Identification
Analyst Initials
Sample Detection Limit
Method Quantitation Limit
This analysis/parameter is not accreditable under the current NELAP program

Laboratory Data Package Cover Page

This data package for Laboratory Job Number 1111546 consists of:

\checkmark	This s	signature page, the laboratory review checklist, and the following reportable data:
	R1 R2 R3	 Field chain-of-custody documentation; Sample identification cross-reference; Test reports (analytical data sheets) for each environmental sample that includes: a) Items consistent with NELAC 5.13 or ISO/IEC 17025 Section 5.10 b) dilution factors, c) preparation methods, d) cleanup methods, and e) if required for the project, tentatively identified compounds (TICs).
\checkmark	R4	Surrogate recovery data including: a) Calculated recovery (%R), and b) The laboratory's surrogate QC limits.
\mathbf{V}	R5 R6	 Test reports/summary forms for blank samples; Test reports/summary forms for laboratory control samples (LCSs) including: a) LCS spiking amounts, b) Calculated %R for each analyte, and c) The laboratory's LCS QC limits.
	R7	 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: a) Samples associated with the MS/MSD clearly identified, b) MS/MSD spiking amounts, c) Concentration of each MS/MSD analyte measured in the parent and spiked samples, d) Calculated %Rs and relative percent differences (RPDs), and e) The laboratory's MS/MSD QC limits
	R8	 Laboratory analytical duplicate (if applicable) recovery and precision: a) the amount of analyte measured in the duplicate, b) the calculated RPD, and c) the laboratory's QC limits for analytical duplicates.
✓ ✓	R9 R10	List of method quantitation limits (MQLs) for each analyte for each method and matrix; Other problems or anomalies.
\checkmark	The E	Exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release Statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: [] This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Genball X. Brown President

11/29/11

Kendall K. Brown Name (Printed)

Signature

Official Title (Printed)

Date

Laho	rator	ry Name: FRMI Environmental Laboratories	LRC Date:	11/29/11					
Droid	oct N	amo: SC Sediment Sampling	Laboratory Job Number	1111546					
Proje		Leslie Underwood	Bron Batch Number(a):	1K21052 1K22006	116.25	1030			
#1		Name.	Fiep Baten Number(s).	11121002,11122000,	Voe	No	N A ³		ED# ⁵
# R1	0	Chain-of-custody (C-O-C)			163	NU	NA		LN#
	•	Did samples meet the laboratory's standard conditions of sample	acceptability upon receipt?		X	I			
		Were all departures from standard conditions described in an ex	ception report?		X				
R2	OI	Sample and quality control (QC) identification						11	
		Are all field sample ID numbers cross-referenced to the laborato	rv ID numbers?		Х			Г Т	
		Are all laboratory ID numbers cross-referenced to the correspon	ding QC data?		Х				
R3	OI	Test reports							
		Were all samples prepared and analyzed within holding times?			Х				
		Other than those results < MQL, were all other raw values brack	eted by calibration standards?		Х				
		Were calculations checked by a peer or supervisor?			Х				
		Were all analyte identifications checked by a peer or supervisor?			Х				
		Were sample quantitation limits reported for all analytes not dete	cted?		Х				
		Were all results for soil and sediment samples reported on a dry	weight basis?		Х				
		Were % moisture (or solids) reported for all soil and sediment sa	mples?		Х				
		If required for the project, TICs reported?					Х		
R4	0	Surrogate recovery data		·					
		Were surrogates added prior to extraction?					Х		
		Were surrogate percent recoveries in all samples within the labo	ratory QC limits?				Х		
R5	OI	Test reports/summary forms for blank samples							
		Were appropriate type(s) of blanks analyzed?			Х				
		Were blanks analyzed at the appropriate frequency?			Х				
		Were method blanks taken through the entire analytical process,	including preparation and, if appl	licable,	Х				
		cleanup procedures?							
		Were blank concentrations < MQL?			Х				
R6	OI	Laboratory control samples (LCS):							
						T		<u>г г</u>	
		Were all COCs included in the LCS?			Х				
		Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, inc	luding prep and cleanup steps?		X X				
		Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency?	luding prep and cleanup steps?		X X X				
		Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory C	luding prep and cleanup steps?		X X X X				
		Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory C Does the detectability data document the laboratory's capability to calculate the SDL s?	luding prep and cleanup steps? IC limits? to detect the COCs at the MDL us	sed to	X X X X X				
		Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory C Does the detectability data document the laboratory's capability to calculate the SDLs? Was the LCSD RPD within OC limits?	luding prep and cleanup steps? Climits? o detect the COCs at the MDL us	sed to	X X X X X				
R7	01	Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory C Does the detectability data document the laboratory's capability to calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MSD) and matrix spike duplicate (MSD) data	luding prep and cleanup steps? IC limits? to detect the COCs at the MDL us	sed to	X X X X X X				
R7	OI	Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory C Does the detectability data document the laboratory's capability to calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a	Iuding prep and cleanup steps? IC limits? to detect the COCs at the MDL us	sed to	X X X X X X				
R7	OI	Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory C Does the detectability data document the laboratory's capability to calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency?	Iuding prep and cleanup steps? IC limits? to detect the COCs at the MDL us nd MSD?	sed to	X X X X X X X X				
R7	OI	Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory C Does the detectability data document the laboratory's capability to calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC	Iuding prep and cleanup steps? C limits? to detect the COCs at the MDL us nd MSD?	sed to	X X X X X X X X	×			E001
R7	OI	Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory C Does the detectability data document the laboratory's capability to calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits?	luding prep and cleanup steps? C limits? to detect the COCs at the MDL us nd MSD?	sed to	X X X X X X X				E001 E002
R7 R8	OI	Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory G Does the detectability data document the laboratory's capability to calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits? Analytical duplicate data	luding prep and cleanup steps? C limits? to detect the COCs at the MDL us nd MSD? limits?	sed to	X X X X X X X				E001 E002
R7 R8	01	Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory C Does the detectability data document the laboratory's capability is calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits? Analytical duplicate data Were appropriate analytical duplicates analyzed for each matrix?	luding prep and cleanup steps? C limits? to detect the COCs at the MDL us nd MSD? limits?	sed to	X X X X X X X X X X				E001 E002
R7 R8	01	Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory C Does the detectability data document the laboratory's capability is calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits? Analytical duplicate data Were appropriate analytical duplicates analyzed for each matrix?	luding prep and cleanup steps? IC limits? to detect the COCs at the MDL us nd MSD? limits? //	sed to	X X X X X X X X X X				E001 E002
R7 R8	01	Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory C Does the detectability data document the laboratory's capability is calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits? Analytical duplicate data Were appropriate analytical duplicates analyzed for each matrix? Were analytical duplicates analyzed at the appropriate frequency? Were RPDs or relative standard deviations within the laboratory	luding prep and cleanup steps? IC limits? to detect the COCs at the MDL us nd MSD? limits? /? QC limits?	sed to	X X X X X X X X X X X X				E001 E002
R7 R8 R9	01	Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory G Does the detectability data document the laboratory's capability is calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits? Analytical duplicate data Were appropriate analytical duplicates analyzed for each matrix? Were analytical duplicates analyzed at the appropriate frequency. Were RPDs or relative standard deviations within the laboratory Method quantitation limits (MQLs):	luding prep and cleanup steps? IC limits? to detect the COCs at the MDL us nd MSD? limits? QC limits?	sed to	X X X X X X X X X X X X X	x			E001 E002
R7 R8 R9	01	Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory G Does the detectability data document the laboratory's capability is calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits? Analytical duplicate data Were appropriate analytical duplicates analyzed for each matrix? Were analytical duplicates analyzed at the appropriate frequency? Were RPDs or relative standard deviations within the laboratory Method quantitation limits (MQLs): Are the MQLs for each method analyte included in the laboratory	luding prep and cleanup steps? IC limits? to detect the COCs at the MDL us nd MSD? limits? QC limits? QC limits? data package?	sed to	X X X X X X X X X X X X X				E001 E002
R7 R8 R9	01	Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory G Does the detectability data document the laboratory's capability to calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits? Analytical duplicate data Were appropriate analytical duplicates analyzed for each matrix? Were analytical duplicates analyzed at the appropriate frequency. Were RPDs or relative standard deviations within the laboratory Method quantitation limits (MQLs): Are the MQLs for each method analyte included in the laboratory.	Iuding prep and cleanup steps? IC limits? to detect the COCs at the MDL us nd MSD? limits? QC limits? QC limits? data package? zero calibration standard?	sed to	X X X X X X X X X X X X X X X				E001 E002
R7 R8 R9	01	Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory G Does the detectability data document the laboratory's capability to calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits? Analytical duplicate data Were appropriate analytical duplicates analyzed for each matrix? Were analytical duplicates analyzed at the appropriate frequency? Were RPDs or relative standard deviations within the laboratory Method quantitation limits (MQLs): Are the MQLs for each method analyte included in the laboratory Do the MQLs correspond to the concentration of the lowest non- Are unadjusted MQLs included in the laboratory data package?	Iuding prep and cleanup steps? IC limits? to detect the COCs at the MDL us nd MSD? limits? QC limits? QC limits? data package? zero calibration standard?	sed to	X X X X X X X X X X X X X X X X X X X	XXX			E001 E002
R7 R8 R9 R10	0I 0I 0I	Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory G Does the detectability data document the laboratory's capability in calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits? Analytical duplicate data Were appropriate analytical duplicates analyzed for each matrix? Were analytical duplicates analyzed at the appropriate frequency? Were RPDs or relative standard deviations within the laboratory Were RQLs for each method analyte included in the laboratory Do the MQLs correspond to the concentration of the lowest non- Are unadjusted MQLs included in the laboratory data package? Other problems/anomalies	Iuding prep and cleanup steps? IC limits? to detect the COCs at the MDL us nd MSD? limits? QC limits? QC limits? r data package? zero calibration standard?	sed to	X X X X X X X X X X X X X X X X X X	X X X			E001 E002
R7 R8 R9 R10	0I 0I 0I	Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory C Does the detectability data document the laboratory's capability in calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS and Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits? Analytical duplicate data Were analytical duplicates analyzed for each matrix? Were analytical duplicates analyzed at the appropriate frequency? Were RPDs or relative standard deviations within the laboratory Were RPDs or relative standard deviations within the laboratory Do the MQLs for each method analyte included in the laboratory Do the MQLs correspond to the concentration of the lowest non- Are unadjusted MQLs included in the laboratory data package? Other problems/anomalies Are all known problems/anomalies/special conditions noted in the	Iuding prep and cleanup steps? IC limits? to detect the COCs at the MDL us nd MSD? limits? QC limits? data package? zero calibration standard? is LRC and ER?	sed to	X X X X X X X X X X X X X X X X X X X	X X X			E001 E002
R7 R8 R9 R10	0I 0I 0I	Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory C Does the detectability data document the laboratory's capability calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits? Analytical duplicate data Were appropriate analytical duplicates analyzed for each matrix? Were RPDs or relative standard deviations within the laboratory Were RPDs or relative standard deviations within the laboratory Do the MQLs for each method analyte included in the laboratory Do the MQLs correspond to the concentration of the lowest non- Are unadjusted MQLs included in the laboratory data package? Other problems/anomalies Are all known problems/anomalies/special conditions noted in th Were all necessary corrective actions performed for the reported	Iuding prep and cleanup steps? IC limits? to detect the COCs at the MDL us nd MSD? limits? /? QC limits? /? QC limits? /? QC limits? /? adata package? zero calibration standard? s LRC and ER? data?	sed to	X X X X X X X X X X X X X X X X X X X				E001 E002
R7 R8 R9 R10	01 01 01	Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory C Does the detectability data document the laboratory's capability calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits? Analytical duplicate data Were appropriate analytical duplicates analyzed for each matrix? Were RPDs or relative standard deviations within the laboratory Were RPDs or relative standard deviations within the laboratory Do the MQLs for each method analyte included in the laboratory Do the MQLs correspond to the concentration of the lowest non- Are unadjusted MQLs included in the laboratory data package? Other problems/anomalies Are all known problems/anomalies/special conditions noted in th Were all necessary corrective actions performed for the reported Was applicable and available technology used to lower the SDL	Iuding prep and cleanup steps? IC limits? to detect the COCs at the MDL us nd MSD? limits? QC limits? QC limits? data package? zero calibration standard? is LRC and ER? data? to minimize the matrix interference	sed to	X X X X X X X X X X X X X X X X X X X				E001 E002
R7 R8 R9 R10	01 01 01	Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory C Does the detectability data document the laboratory's capability is calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits? Analytical duplicate data Were appropriate analytical duplicates analyzed for each matrix? Were analytical duplicates analyzed at the appropriate frequency Were RPDs or relative standard deviations within the laboratory Were MQLs for each method analyte included in the laboratory Do the MQLs correspond to the concentration of the lowest non- Are unadjusted MQLs included in the laboratory data package? Other problems/anomalies Are all known problems/anomalies/special conditions noted in th Were all necessary corrective actions performed for the reported Was applicable and available technology used to lower the SDL on the sample results?	Iuding prep and cleanup steps? IC limits? to detect the COCs at the MDL us nd MSD? limits? Imits? QC limits? QC limits? data package? zero calibration standard? is LRC and ER? data? to minimize the matrix interference	e affects	X X X X X X X X X X X X X X X X X X X				E001 E002
R7 R8 R9 R10	OI OI OI	Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory C Does the detectability data document the laboratory's capability if calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits? Analytical duplicate data Were appropriate analytical duplicates analyzed for each matrix? Were analytical duplicates analyzed at the appropriate frequency Were RPDs or relative standard deviations within the laboratory Were RPDs or relative standard deviations within the laboratory Do the MQLs for each method analyte included in the laboratory Do the MQLs correspond to the concentration of the lowest non- Are unadjusted MQLs included in the laboratory data package? Other problems/anomalies Are all known problems/anomalies/special conditions noted in th Were all necessary corrective actions performed for the reported Was applicable and available technology used to lower the SDL on the sample results? Inded by the letter 'R' must be included in the laboratory data package submitted in the TRRP-required rep end.	Iluding prep and cleanup steps? IC limits? to detect the COCs at the MDL us and MSD? limits? Ilimits? QC limits? QC limits? Adata package? zero calibration standard? is LRC and ER? data? to minimize the matrix interference art(s). Items identified by the letter "5" should be retain	sed to	X X X X X X X X X X X X X X X X X X X	X X X			E001 E002
R7 R8 R9 R10	OI OI OI	Were all COCs included in the LCS? Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory C Does the detectability data document the laboratory's capability if calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits? Analytical duplicate data Were appropriate analytical duplicates analyzed for each matrix? Were analytical duplicates analyzed at the appropriate frequency? Were RPDs or relative standard deviations within the laboratory Method quantitation limits (MQLs): Are the MQLs for each method analyte included in the laboratory Do the MQLs correspond to the concentration of the lowest non- Are unadjusted MQLs included in the laboratory data package? Other problems/anomalies Are all known problems/anomalies/special conditions noted in th Were all necessary corrective actions performed for the reported Was applicable and available technology used to lower the SDL on the sample results?	Iluding prep and cleanup steps? IC limits? to detect the COCs at the MDL us and MSD? limits? Ilimits? QC limits? QC limits? data package? zero calibration standard? is LRC and ER? data? to minimize the matrix interference art(s). Items identified by the letter "5" should be retail	sed to	X X X X X X X X X X X X X X X X X X X	X X X			E001 E002

	Laboratory	/ Review	Checklist:	Re	portable	Data
--	------------	----------	-------------------	----	----------	------

5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Project Name: SC Sediment Sampling Laboratory Job 1111546 Review Name: Leslie Underwood Prop Batch Number(s): 1112052,1122006,1128039 # A Description Yes No NR Ref S1 O Description Yes No NR Ref S1 O Description Yes No NR Ref S1 O Description X Laboratory X Laboratory Were precent RSDs or correlative response factors for each analyte within QC limits? X Laboratory X Laboratory Was the number of standards recommended in the method used for all analytes? X Laboratory X Lab	Labo	orato	y Name: ERMI Environmental Laboratories	LRC Date:	11/29/11					
Lesile Underwood Yes No. NA NR* ER# #* A Description Yes No. NA NR* ER# \$1 OI Initial calibration (ICAL) Yes No. NA NR* ER# Were response factors and/or relative response factors for each analyte within QC limits? X Image: Colspan="2">Image: Colspan="2" Image: Colspan="2">Image: Colspan="2" X Image: Colspan="2">Image: Colspan="2" X Image: Colspan="2" Image: Colspan="2">Image: Colspan="2" X Image: Colspan="2" X	Proje	ect N	ame: SC Sediment Sampling	Laboratory Job	1111546					
#' A' Description Yes No NA' NR' ERf S1 OI Initial calibration (IGAL) X Image: Constraint on the initial calibration (IGAL) Were percent RSDs or correlation coefficient citeria met? X Image: Constraint on the initial calibration coefficient citeria met? X Image: Constraint on the initial calibration coefficient citeria met? X Image: Constraint on the initial calibration coefficient citeria met? X Image: Constraint on the initial calibration coefficient citeria met? X Image: Constraint on the initial calibration coefficient citeria met? X Image: Constraint on the initial calibration coefficient citeria met? X Image: Constraint on the initial calibration coefficient citeria method used for a constraint on the inorganic CCM and CV) and continuing calibration X Image: Constraint on the inorganic CCM and CV and continuing calibration Was the CCA curve verified for each analyte Was the CCM curve verified for each analyte X Image: Constraint on the inorganic CCB < MDL? X Image: Constraint on the inorganic CCB < MDL? X Image: Constraint on the inorganic CCB < MDL? X Image: Constraint on the inorganic CCB < MDL? X Image: Constraint on the inorganic CCB < MDL? X Image: Constraint on the inorganic CCB < MDL? X Image: Constrainton constrainton resulto method required QC Imit	Revi	ewer	Name: Leslie Underwood	Prep Batch Number(s):	1K21052,1K22006,1	K28	039			
S1 OI Initial calibration (CAL) Were response factors and/or relative response factors for each analyte within QC limits? X Image: Comparison of Comparison o	# ¹	\mathbf{A}^2	Description	· · · · · · ·	Y	′es	No	\mathbf{NA}^3	NR^4	ER# ⁵
Image: space of the second	S1	OI	Initial calibration (ICAL)							
ket Were percent RSDs or correlation coefficient citeria met? X I I I Was the number of standards recommended in the method used for all analytes? X I I I Were all points generated between the lowest and highest standard used to calculate the curve? X I I I I Are ICAL data available for all instruments used? X I			Were response factors and/or relative response factors for each	n analyte within QC limits?		Х				
Was the number of standards recommended in the method used for all analytes? X Image: Control of Control Contro Control Control Contro Control Control Control Control Control Co			Were percent RSDs or correlation coefficient criteria met?			Х				
Were all points generated between the lowest and highest standard used to calculate the curve? X I I Are ICAL data available for all instruments used? X I I I Has the initial calibration curve been verified using an appropriate second source standard? X I I S2 OI Initial and continuing calibration verification (ICCV and CCV) and continuing calibration X I I S3 O Mas the CCV analyzed at the method-required frequency? X I I I Was the ICAL curve verified for each analyte within the method-required QC limits? X I I I I Was the absolute value of the analyte concentration in the inorganic CCB < MDL? X I			Was the number of standards recommended in the method use	ed for all analytes?		Х				
Are ICAL data available for all instruments used? X X X Has the initial calibration curve been verified using an appropriate second source standard? X X X 20 Initial and continuing calibration verification (ICCV and CCV) and continuing calibration X X X Was the CCV analyzed at the method-required frequency? X X X X X Was the CCA canzy everified for each analyte? X X X X X Was the absolute value of the analyte concentration in the inorganic CCB < MDL? X X X S3 O Mass spectral tuning: X X X X Was the absolute value of the method-required QC limits? X X X S4 O Internal standards (IS): X X X Were is a acounts and retention times within the method-required QC limits? X X X S5 O Internal standards (IS): X X X X S6 O and column confirmation X X X X X X X X X X X X X X			Were all points generated between the lowest and highest stan	dard used to calculate the curve?		Х				
Has the initial calibration curve been verified using an appropriate second source standard? X </th <th></th> <th></th> <th>Are ICAL data available for all instruments used?</th> <th></th> <th></th> <th>Х</th> <th></th> <th></th> <th></th> <th></th>			Are ICAL data available for all instruments used?			Х				
S2 OI Initial and continuing calibration (ICCV and CCV) and continuing calibration Was the CCV analyzed at the method-required frequency? X I Was the CCV analyzed at the method-required QC limits? X I Was the ICAL curve verified for each analyte within the method-required QC limits? X I Was the absolute value of the analyte concentration in the inorganic CCB < MDL? X I S3 O Mass spectral tuning: X I Was the appropriate compound for the method-required QC limits? X I X S4 O Internal standards (IS): X I I Ware the raw data (for example, chromatograms, spectral data) reviewed by an analyst? X I I S6 O Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025 section I I Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst? X I I S6 O aud column confirmation I I I I S7 O Tentative identified compounds (TICS): I I I S8 I Intefference Check Sample (CS)			Has the initial calibration curve been verified using an appropria	ate second source standard?		Х				
Was the CCV analyzed at the method-required frequency? X I Were percent differences for each analyte within the method-required QC limits? X I Was the ICAL curve verified for each analyte? X I I Was the absolute value of the analyte concentration in the inorganic CCB < MDL? X I I S3 O Mass spectral tuning: X I I Was the appropriate compound for the method used for tuning? X I X I Was the appropriate compound for the method-required QC limits? X I I X I S4 O Internal standards (IS): X I I X I I S5 OI Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025 section X I I I S6 O Dual column confirmation X I <td< th=""><th>S2</th><th>OI</th><th>Initial and continuing calibration verification (ICCV and CCV) a</th><th>and continuing calibration</th><th></th><th></th><th></th><th>1</th><th></th><th></th></td<>	S2	OI	Initial and continuing calibration verification (ICCV and CCV) a	and continuing calibration				1		
Were percent differences for each analyte within the method-required QC limits? X <td< th=""><th></th><th></th><th>Was the CCV analyzed at the method-required frequency?</th><th></th><th></th><th>Х</th><th></th><th></th><th></th><th></th></td<>			Was the CCV analyzed at the method-required frequency?			Х				
Was the ICAL curve verified for each analyte? X Image: Constant of the set of the analyte concentration in the inorganic CCB < MDL? X Image: Constant of the set o			Were percent differences for each analyte within the method-re	quired QC limits?		Х				
Was the absolute value of the analyte concentration in the inorganic CCB < MDL? X I S3 O Mass spectral tuning: X I Was the appropriate compound for the method used for tuning? X X I Were ion abundance data within the method-required QC limits? X X I S4 O internal standards (IS): X I Were lor abundance data within the method-required QC limits? X I X I S5 OI Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025 section X I I Were ter aw data (for example, chromatograms, spectral data) reviewed by an analyst? X I I I S6 O Dual column confirmation X I </th <th></th> <th></th> <th>Was the ICAL curve verified for each analyte?</th> <th></th> <th></th> <th>Х</th> <th></th> <th></th> <th></th> <th></th>			Was the ICAL curve verified for each analyte?			Х				
S3 O Mass spectral tuning: Was the appropriate compound for the method used for tuning? X Were ion abundance data within the method-required QC limits? X S4 O Mere ion abundance data within the method-required QC limits? X S5 OI Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025 section S5 OI Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025 section Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst? X I Were data associated with manual integrations flagged on the raw data? X I S6 O Dual column confirmation results meet the method-required QC? X I S7 O Tentatively identified compounds (TICs): X I S8 I Interference Check Sample (ICS) results: X I S8 I Interference Check Sample (ICS) results: X I S9 I Serial dilutions, post digestion spikes, and method of standard additions X I S9 I Serial dilutions, post digestion spikes, and the linearity within the QC limits specified in the method?			Was the absolute value of the analyte concentration in the inorg	ganic CCB < MDL?		Х				
Was the appropriate compound for the method used for tuning? X Were ion abundance data within the method-required QC limits? X S4 O Internal standards (IS): X Were IS area counts and retention times within the method-required QC limits? X S0 Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025 section Were IS area counts and retention times within the method-required QC limits? X Were data associated with manual integrations flagged on the raw data? X Were data associated with manual integrations flagged on the raw data? X S6 O Lual column confirmation X E Did dual column confirmation results meet the method-required QC? X S7 O Tentatively identified compounds (TICs): X If TiCs were requested, were the mass spectra and TIC data subject to appropriate checks? X X S8 I Interference Check Sample (ICS) results: X X X Were percent recoveries within method QC limits? X X X X S9 I Serial dilutions, post digestion spikes, and method of standard additions X X X X X X X	S3	0	Mass spectral tuning:					[гг	
Were ion abundance data within the method-required QC limits? X S4 O Internal standards (IS): S5 OI Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025 section Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst? X Image: Comparison of Comparison o			Was the appropriate compound for the method used for tuning	?				Х		
S4 0 Internal standards (IS): Were IS area counts and retention times within the method-required QC limits? X S5 0I Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025 section Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst? X Image: Comparison of Comparison			Were ion abundance data within the method-required QC limits	?				Х		
Were IS area counts and retention times within the method-required QC limits? X S5 OI Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025 section Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst? X Image: Comparison of Compar	S4	0	Internal standards (IS):							
S5 OI Raw data (NELAC section 1 appendix A glossary, and section 5.12 or ISO/IEC 17025 section Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst? X Image: Constraint of Constraints of Constrant of Constraints of Constraints of Constrain			Were IS area counts and retention times within the method-req	uired QC limits?				Х		
Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst? X X Were data associated with manual integrations flagged on the raw data? X X X S6 O Dual column confirmation X X X S7 O Tentatively identified compounds (TICs): X X X X S8 I Interference Check Sample (ICS) results: X X X X S9 I Serial dilutions, post digestion spikes, and method of standard additions X X X X S10 OI Method detection limit (MDL) studies X </th <th>S5</th> <th>OI</th> <th>Raw data (NELAC section 1 appendix A glossary, and section</th> <th>5.12 or ISO/IEC 17025 section</th> <th>1</th> <th></th> <th></th> <th></th> <th>r r</th> <th></th>	S5	OI	Raw data (NELAC section 1 appendix A glossary, and section	5.12 or ISO/IEC 17025 section	1				r r	
S6 O Dual column confirmation Image: S7 O Tentatively identified compounds (TICs): Image: S7 O Tentatively identified compounds (TICs): Image: S7 O Tentatively identified compounds (TICs): Image: S8 I Interference Check Sample (ICS) results: S8 I Interference Check Sample (ICS) results: Image: S9 Image: Serial dilutions, post digestion spikes, and method of standard additions S9 I Serial dilutions, post digestion spikes, and method of standard additions Image: S10 OI Method detection limit (MDL) studies Image: S11 OI Proficiency test reports: Image: S11 OI Proficiency test reports: Image: S12 OI Standards documentation			Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?		X				
S6 0 Dual column confirmation M Did dual column confirmation results meet the method-required QC? X S7 0 Tentatively identified compounds (TICs): If TICs were requested, were the mass spectra and TIC data subject to appropriate checks? X S8 1 Interference Check Sample (ICS) results: X Vere percent recoveries within method QC limits? X S9 1 Serial dilutions, post digestion spikes, and method of standard additions Were percent differences, recoveries, and the linearity within the QC limits specified in the method? X V S10 OI Method detection limit (MDL) studies V V Was a MDL study performed for each reported analyte? X V V Is the MDL either adjusted or supported by the analysis of DCSs? X V V S11 OI Proficiency test reports: V V V S12 OI Standards documentation V V V			Were data associated with manual integrations flagged on the i	'aw data?		X	_			
S7 O Tentatively identified compounds (TICs): I X X S8 I Interference Check Sample (ICS) results: X X X S9 I Serial dilutions, post digestion spikes, and method of standard additions X X X X S9 I Serial dilutions, post digestion spikes, and method of standard additions X <t< th=""><th>56</th><th>0</th><th>Dual column confirmation</th><th>002</th><th></th><th>- 1</th><th></th><th>V</th><th><u>г</u></th><th></th></t<>	56	0	Dual column confirmation	002		- 1		V	<u>г</u>	
S7 O Ternatively identified compounds (TCS): If TICs were requested, were the mass spectra and TIC data subject to appropriate checks? X S8 I Interference Check Sample (ICS) results: Were percent recoveries within method QC limits? X S9 I Serial dilutions, post digestion spikes, and method of standard additions Were percent differences, recoveries, and the linearity within the QC limits specified in the method? X Image: Composite C	67		Did dual column commation results meet the method-required					^		
S8 I Interference Check Sample (ICS) results: X	3/		If TICs were requested, were the mass spectra and TIC data si	biect to appropriate checks?		1		Y	I I	
S0 1 Interference officer officers. Were percent recoveries within method QC limits? X S9 1 Serial dilutions, post digestion spikes, and method of standard additions Were percent differences, recoveries, and the linearity within the QC limits specified in the method? X S10 OI Method detection limit (MDL) studies Was a MDL study performed for each reported analyte? X Is the MDL either adjusted or supported by the analysis of DCSs? X S11 OI Proficiency test reports: Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies? X S12 OI Standards documentation	58	l	Interference Check Sample (ICS) results:					~		
S9 I Serial dilutions, post digestion spikes, and method of standard additions Were percent differences, recoveries, and the linearity within the QC limits specified in the method? X Image: Comparison of the temperature of tem		· •	Were percent recoveries within method OC limits?			x		1	<u> </u>	
Sto Vere percent differences, recoveries, and the linearity within the QC limits specified in the method? X Image: Control of the linearity within the QC limits specified in the method? Sto OI Method detection limit (MDL) studies Image: Control of the linearity within the QC limits specified in the method? X Image: Control of the linearity within the QC limits specified in the method? Mass a MDL study performed for each reported analyte? X Image: Control of the linearity within the QC limits specified in the method? Sto Was a MDL study performed for each reported analyte? X Image: Control of the linearity within the QC limits specified in the method? Sto Proficiency test reports: X Image: Control of the linearity within the QC limits specified in the method? Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies? X Image: Control of the QC limits specified in the method? S12 OI Standards documentation Image: Control of the QC limits specified in the applicable proficiency test specified in the method? Image: Control of the QC limits specified in the method?	59		Serial dilutions, post digestion spikes, and method of standar	d additions		~				
S10 OI Method detection limit (MDL) studies Main Was a MDL study performed for each reported analyte? X		· ·	Were percent differences, recoveries, and the linearity within th	e QC limits specified in the method	?	x		1		
Was a MDL study performed for each reported analyte? X X X Is the MDL either adjusted or supported by the analysis of DCSs? X X X S11 OI Proficiency test reports: X X X Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies? X X X S12 OI Standards documentation X X X	S10	OI	Method detection limit (MDL) studies		·					
Is the MDL either adjusted or supported by the analysis of DCSs? X V V V S11 OI Proficiency test reports: V V V V S12 OI Standards documentation V V V V			Was a MDL study performed for each reported analyte?			x		[
S11 OI Proficiency test reports: Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies? X Image: Content of the applicable proficiency tests or evaluation studies? S12 OI Standards documentation Image: Content of the applicable proficiency tests or evaluation studies?			Is the MDL either adjusted or supported by the analysis of DCS	s?		х				
Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies? X Image: Content of the applicable proficiency tests or evaluation studies? S12 OI Standards documentation Image: Content of the applicable proficiency tests or evaluation studies?	S11	OI	Proficiency test reports:						<u> </u>	
S12 OI Standards documentation		1	Was the laboratory's performance acceptable on the applicable	proficiency tests or evaluation stud	ies?	X				
	S12	OI	Standards documentation						· · ·	
Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?			Are all standards used in the analyses NIST-traceable or obtain	ned from other appropriate sources?	>	Х				
S13 OI Compound/analyte identification procedures	S13	OI	Compound/analyte identification procedures							
Are the procedures for compound/analyte identification documented? X			Are the procedures for compound/analyte identification docume	ented?		Х				
S14 OI Demonstration of analyst competency (DOC)	S14	OI	Demonstration of analyst competency (DOC)							
Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC 4? X			Was DOC conducted consistent with NELAC Chapter 5C or IS	D/IEC 4?		Х				
Is documentation of the analyst's competency up-to-date and on file?			Is documentation of the analyst's competency up-to-date and o	n file?		Х				
S15 OI Verification/validation documentation for methods (NELAC Chap 5 or ISO/IEC 17025 Section 5)	S15	OI	Verification/validation documentation for methods (NELAC Cl	nap 5 or ISO/IEC 17025 Section 5)						
Are all the methods used to generate the data documented, verified, and validated, where applicable?			Are all the methods used to generate the data documented, ver	ified, and validated, where applicat	le?	Х				
S16 OI Laboratory standard operating procedures (SOPs):	S16	OI	Laboratory standard operating procedures (SOPs):							
Are laboratory SOPs current and on file for each method performed? X			Are laboratory SOPs current and on file for each method perfor	med?		Х				

Laboratory	Review	Checklist:	Re	portable	Data
------------	---------------	-------------------	----	----------	------

1. Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

2. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);

3. NA = Not applicable;

4. NR = Not reviewed;

5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laborato	rv Name:	FBMI Environmental Laboratories	LRC Date:	11/29/11
Project N	ame:	SC Sediment Sampling	Laboratory Job	1111546
Reviewer	Name:	Leslie Underwood	Prep Batch Number(s):	1K21052,1K22006,1K28039
ER# ¹	Descriptio	n		
E001	ER# ¹ Description E001 Matrix Spike Recovery for Arsenic (40%) was outside acceptance limits (75-125) in 1K28039-MS1 for As Total ICP 6010B - The recovery of this analyte in the MS was outside the acceptable range due to interference, large dilutions required for analysis of combination of these factors. This indicates a low bias to the result presented for the source sample (1111546-01) reported from the batch. The recovery of this analyte in the LCS(s) was within the acceptable range. Matrix Spike Recovery for Lead (65%) was outside acceptance limits (75-125) in 1K28039-MS1 for Pb Total ICP 6010B - The recovery of this analyte in the MS was outside the acceptable range due to interference, large dilutions required for analysis of combination of these factors. This indicates a low bias to the result presented for the source sample (1111546-01) reported from the combination of these factors. This indicates a low bias to the result presented for the source sample (1111546-01) reported from the combination of these factors. This indicates a low bias to the result presented for the source sample (1111546-01) reported from the combination of these factors. This indicates a low bias to the result presented for the source sample (1111546-01) reported from the combination of these factors. This indicates a low bias to the result presented for the source sample (1111546-01) reported from the combination of these factors. This indicates a low bias to the result presented for the source sample (1111546-01) reported from the combination of these factors. This indicates a low bias to the result presented for the source sample (1111546-01) reported from the combination of these factors. This indicates a low bias to the result presented for the source sample (1111546-01) reported from the combinate presented for the source sam			
	Matrix Spik - The reco combinatio batch. The	e Recovery for Lead (65%) was outside acceptance very of this analyte in the MS was outside the accept n of these factors. This indicates a low bias to the re- recovery of this analyte in the LCS(s) was within the	limits (75-125) in 1K28039-MS1 table range due to interference, l esult presented for the source sar e acceptable range.	for Pb Total ICP 6010B arge dilutions required for analysis or a mple (1111546-01) reported from this
	Matrix Spik - The reco combinatio batch. The	e Recovery for Lead (65%) was outside acceptance very of this analyte in the MS was outside the accep n of these factors. This indicates a low bias to the re recovery of this analyte in the LCS(s) was within th	limits (75-125) in 1K28039-MS2 table range due to interference, l esult presented for the source sar e acceptable range.	for Pb Total ICP 6010B arge dilutions required for analysis or a mple (1111546-11) reported from this
	Matrix Spik - The reco combinatio batch. The	e Recovery for Arsenic (41%) was outside acceptar very of this analyte in the MS was outside the accept n of these factors. This indicates a low bias to the main recovery of this analyte in the LCS(s) was within the	nce limits (75-125) in 1K28039-MS table range due to interference, l esult presented for the source sar e acceptable range.	SD1 for As Total ICP 6010B arge dilutions required for analysis or a mple (1111546-01) reported from this
	Matrix Spik - The reco combinatio batch. The	e Recovery for Lead (54%) was outside acceptance very of this analyte in the MS was outside the accept n of these factors. This indicates a low bias to the main recovery of this analyte in the LCS(s) was within the	limits (75-125) in 1K28039-MSD table range due to interference, l esult presented for the source sar e acceptable range.	1 for Pb Total ICP 6010B arge dilutions required for analysis or a mple (1111546-01) reported from this
	Matrix Spik - The reco combinatio batch. The	e Recovery for Arsenic (145%) was outside accepta very of this analyte in the MS was outside the accept n of these factors. This indicates a high bias to the recovery of this analyte in the LCS(s) was within th	ance limits (75-125) in 1K28039-N atable range due to interference, I result presented for the source sa e acceptable range.	ISD2 for As Total ICP 6010B arge dilutions required for analysis or a ample (1111546-11) reported from this
E002	Matrix Spik - The RPD expected for the accepta	e Duplicate RPD for Arsenic (35%) was above the a of this analyte between the MS(s) was outside of th or the source sample (1111546-11) reported from th able range.	acceptance limit (20) in 1K28039- ne acceptable range. This indicat is batch. The RPD of this same a	MSD2 for As Total ICP 6010B es the result was not as precise as analyte between the LCS(s) was within
	Matrix Spik - The RPD expected for the accepta	e Duplicate RPD for Lead (24%) was above the acc of this analyte between the MS(s) was outside of th or the source sample (1111546-11) reported from th able range.	eptance limit (20) in 1K28039-MS he acceptable range. This indicat is batch. The RPD of this same a	SD2 for Pb Total ICP 6010B res the result was not as precise as analyte between the LCS(s) was within

Laborator		Chacklist.	Excentio	n Reports
	y Review	CHECKIISI.	Exceptio	ii Kepoits

1. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked on the LRC)

Ithwest Anti- attraction ERMIT Dhilds, D. Doillows Eaboratory: ERMIT Dhilds, D. Address: Address: Dhilds, D. Eaboratory: ERMIT Prone: 972-717-1123 Prone: 972-717 Prone: 972-720 Prone: 1 <	Could West Laboratory ERME Roundernais & Hydrogeologic consultants Address: Inomential & Hydrogeologic consultants Address: Inome Gal DH: 145, D District Project Name Sampler Signature JPSon Nymrter/Tinner Rest Adv Nontype of conduces Inome Gal Scondect Inome Gal Benotyping Marks of Sample(s) Inome Gal Scondect Inome Gal Scondect </th <th>CHAIN OF CUSTODY RECORD</th> <th>ESTED</th> <th>Temp. of coolers</th> <th><u>2</u> 2 3 4 5</th> <th>Q Page 1 of 2</th> <th></th> <th></th> <th></th> <th>3777</th> <th>C Lab Sample ID (Lab Use Only)</th> <th>1/1/1246.01</th> <th>Co. 946.02</th> <th>1111546.03</th> <th>1111546.04</th> <th>Se ghs 1111</th> <th>20-246-06</th> <th>ro. 24 2 1111</th> <th>ye - 9/11/1</th> <th>1111546.09</th> <th>(((1546.10</th> <th></th> <th>Time: NOTES:</th> <th>Time:</th> <th>Time:</th> <th></th>	CHAIN OF CUSTODY RECORD	ESTED	Temp. of coolers	<u>2</u> 2 3 4 5	Q Page 1 of 2				3777	C Lab Sample ID (Lab Use Only)	1/1/1246.01	Co. 946.02	1111546.03	1111546.04	Se ghs 1111	20-246-06	ro. 24 2 1111	ye - 9/11/1	1111546.09	(((1546.10		Time: NOTES:	Time:	Time:	
JITINGST Laboratory: RMI OS CIENCE Address: Address: A POSO BIL Address: Address: DHLAS, D Poso BIL Address: DHLAS, D Poso BIL Poso BIL DHLAS, D Poso BIL Poso BIL Ber Li2 SCACKS Samplers Signature Nontrope of Conditionant Bill MMER/TAMY LINATIANY LINATIANY LEAST AMPLING Nontrope of Conditionant Bill Nontrope of Conditionant Bill MMER/TAMY LINATIANY LINATIANY LEAST Signature Poso BIL Signature Poso BIL Signature Poso BIL Poso BIL Signature B Address: B Address: MMER/TAMY LINATIANY LINATIANY LINATIANY LINA Nontrope of Conditionant B B MMER/TAMY LINATIANY LINATIANY LEAST SIGnature B Address: Time B Address: B Address: Time B C B<	Outhwest Address: fc E O S C I E N C E Address: frommental & Hydrogeologic consultants Address: from Project Name Samplers Signague from Project Name Samplers Signague from Project Name Scr.SED JD from Project Name Acc-SED ZD from Project Na		ANALY REQU			- 		2	K KAN	iners	D/d 0	1XU	1 B B	$(\aleph \chi$	1 8 2	1 X X	n V V	R R -	X	1 8 10	1 × ×		Date: Date: //	Date: Date:	Date:	- toto
Ithwest Laboratory: ER OS CIENCE Address: Address: Aby UAS Druds Contact: Druds Druds Contact: Er Samplers Signature ER Samplers Signature Samplers Signature E Contact: Contact: Er Schone: Contact: E G Contact E G Contact E Schone: Contact E Samplers Signature Contact E Schone: Contact E Contact Contact E Contact Contact E Contact Contact E Contact <	JOUTDNESt Laboratory: ER JoutdNME Address: Address: Ironmental & Hydrogeologic consultants Address: Ironmental & Hydrogeologic consultants Phone: 772-717- Et Manager L/2 SCRMS Phone: 772-717- Eris Name Sampler's Signature Sampler's Signature Provision Diel Pione: 772-717- Provision Diel Pione: 772-717- Eris Name ScrAffs PO/SOO #: Pione: Provision Diel Pione: 772-717- Provision Provision Pione: 772-717- Provision Provision Reprint Reprint Provision Provision Provision Reprint Provision Provision Provision Reprint Provision <		II			-1123				No/Type of Conta	VOA A/G 250 1Lt. ml												ture) Aller	turie) Elmi Oursered	tture)	4
Ithwest Laboratory: Address: Address: Althouge consultants Address: Althouge consultants Address: DHUAS, D Phone: 91 Briting Phone: 91 Project Name Sampler's Sig YMTER/TAM/Y King Marks of Sample(s) POISO #: Image 1 Project Name Sampler's Sig YMTER/TAM/Y King Marks of Sample(s) 1 Image 1 Image 2 YMTER/TAM/Y King Marks of Sample(s) 1 Image 2 YMTER/TAM/Y King Marks of Sample(s) 1 Image 2 YMTER/TAM/Y King Marks of Sample(s) 1	Could The State Laboratory: G E O S C I E N C E Address: ironmental & Hydrogeologic consultants Address: ironmental & Hydrogeologic consultants Polone: Gradit e Location DHUAS, D et Location DHUAS, D polocation Date polocation Date polocation Date polocation DASC-SED polocation DASC-SED polocation DSC-SED polocation DSC-SED polocation DSC-SED polocatine SC-SED polocation <td></td> <td>ERN</td> <td></td> <td></td> <td>- 21-21</td> <td></td> <td>lature O</td> <td></td> <td>PLING</td> <td>Start Depth End Mgent</td> <td>0</td> <td>0 6</td> <td>0</td> <td>0</td> <td>0</td> <td>9 0</td> <td>C C C</td> <td>0</td> <td>06</td> <td>0 6</td> <td>🗆 100% Rush</td> <td>ived py: (Signa</td> <td>ived by: (Signe</td> <td>ived by: (Signa</td> <td></td>		ERN			- 21-21		lature O		PLING	Start Depth End Mgent	0	0 6	0	0	0	9 0	C C C	0	06	0 6	🗆 100% Rush	ived py: (Signa	ived by: (Signe	ived by: (Signa	
Ithwester Athwester A Hydrogeologic Consultants A Hydrogeologic Consultants A Hydrogeologic Consultants A Hydrogeologic Consultants A Project Name A P Project Name A P Project Name A P P Project Name A P P P P P P P P P P P P P P P P P P P	Outhwest Notes of the Notes Inommental & Hydrogeologic Consultants Inommental & Hydrogeologic Consultants Inommental & Hydrogeologic Consultants Inommental & Hydrogeologic Consultants Inomerical & Kondinature Inomerical & Kondinature <		Laboratory:_	Address:	Contact:	Phone: 97	PO/SO #:	Sampler's Sigr	W KARANITA	VF SAM	arks of Sample(s)	11 02	a e	to 9	30 B	10	90	0 J Z	ED 30	ED 29	A 28] 50% Rush	Time: Received	Time: Bece	Time: Rece	i
Athresolution and a substant of the substant o	Contraction DALAS Control & Hydrogeologic C Control & Hydrogeologic C Control & Hydrogeologic C Control & Control Control & Control & Control Control & Control & Control Control & Control & Control Control & Control & Control & Control Control & Control & Control & Control Control & Control & Contro		DSt CE	Consultants	X		žýš		V KIM ADH	lame SEDIMEN	Identifying Ma	20-51	SC-SE	SC-S∉	35-25	5-S1	SU-Se	SC-54	SC-SI	SC-51	SC-SE	25% Rush	Date: Date: 11/1 2/1	Bate: 1///////////////	Date:	
Jthy OSC & Hydrogec & Hydrogec & Hydrogec & Hydrogec Brite 1/125	Detection DH inconnential & Hydrogec inconnential & Hydrogec inconnential & Hydrogec inconnential & Hydrogec inconnential & Hydrogec DH inconnential & Hydrogec DH		V E E	logic C	AS,	ne.	SCA		NWO	S C C	0-80	R	R	×	R	R	8	X	×	X	$\boldsymbol{\times}$,	1		
	ironmental de Location el Location el Location el Location $G \in C$ Manage ler's Name $J = C = C = C = C = C = C = C = C = C = $		uthv	& Hydrogeo	DAL		ier 6/2		4 WER/7	1 <u>1</u>	Time	1456	1525	1538	1556	1647	5011	1736	1050	1125	1140	Worma	Signature)	Spineture)	Signature) U	Cicence (100)

SOUTHWEST GEOSCIENCE • 2351 W. Northwest Hwy., Suite 3321 • Dallas, Texas 75220 • Office: 214-350-5469 • Fax 214-350-2914

こうちょう はなな たいちょう ちょうちょう かいしょう きょう ひょうてい しょう たいない ないまた たいまた たいちょう たいちょう たいしん 日本 自然 いたい ほん いたい

SOUTHWEST GEOSCIENCE • 2351 W. Northwest Hwy., Suite 3321 • Dallas, Texas 75220 • Office: 214-350-5469 • Fax 214-350-2914

10 C - 2

lllsup

と地域構成ではない。たらしたいで、ためでしたが、これで、ここに確認的機能のため

	N/M	NOTARY SERVICE AVAILABLE		N	0.
	BICO PPESS We Deliver P.O. BOX 940303 PLANO, TX 75094-0303 (972) 881-7577	ADRESS ADD WAST GEOSCIENCE		Charges ID CT D TRIP	Type of Delivery
NO. PCS.		DESCRIPTION AND REMARKS	WEIGHT	i	CHARGES
	SHMALO			WEIGHT CHARGE	
				WAITING TIME CHG	
	L			DELIVERY CHARGE	
WAITING TIM NOT RESP CONCEAL	E > ONSIBLE FOR FREIGHT CLAIMS AFTER 72 HRS ED DAMAGE, DUE AND PAYABLE PLANO, COLLII	NOT RESPONSIBLE FOR \$50 DECLARED VALUE N COUNTY, TEXAS UNLEAS SPECIFIED HERE \$	TOT CHAF	AL IGES	
DRIVER NAM	DRIVER NAME & NO.	TIME OBORT SAL RECEIVED AND INTER	RECEIVED	BY	-
ļ	Mancia Colory	()			÷

10

CONTAINERS

ED BY:

X-409

Lab Number(s): _____

<u>ERMI</u> ERMI Sample Preservation Documentation*

On Ice (Circle One): YES OR NO (check if on Dry Ice_____)

Parameters	Conta #	ainers Size	Required Preservation	Sample Container	Circle pH Note any discrepancy
Metals			pH < 2	Glass or Plastic	pH < 2
Dissolved Metals			Unpreserved prior to being filtered, Cool**	Glass or Plastic	
Hexavalent Chromium			CWA - pH 9.3-9.7, Cool; RCRA - Cool	Glass or Plastic	Checked At Analysis
Semivolatiles, Pesticides, PCBs, Herbicides			Cool	Glass only with Teflon lid	Chlorine Dyes Dno
VOA (BTEX, MTBE, 624, 8260, TPH-GRO)			Cool, pH < 2 Zero Head Space	40 ml VOA vial	DO NOT OPEN
VOA (TPH-1005)			Cool, Zero Head Space Please check if collected in pre-weighed vials	40 ml VOA vial	DO NOT OPEN
Phos., NO₃/NO₂, NH₃N, COD, TKN,TOC			Cool, pH < 2	Glass or Plastic	pH < 2
TDS, BOD, CBOD, Cond, pH, TSS, F, SO₄, CI, Alk, Sulfite			Cool	Glass or Plastic, Plastic only if F	
Phenols, TPH-DRO			Cool, pH < 2	Glass only Teflon lid Foil lid	pH < 2
Oil & Grease, TPH (by 1664a)			Cool, pH < 2	Glass only Teflon lid Foil lid	DO NOT Check pH
Cyanide			Cool, pH >12	Glass or Plastic	pH > 12 Chlorine ⊡yes ⊡no Sulfide ⊡yes ⊡no ⊡na
Sulfide			Cool, pH > 9	Glass or Plastic	pH > 9
Bacteria			Cool	Plastic Sterile Cup	
Sòi∖ Sludge, Solid, Oil, Liquid	19	9.2	Cool Note: please check if collected in pre-weighed vials	glm	

*This form is used to document sample preservation. Circle parameter requested. Fill in number and size of containers received. Check pH (adjust if needed) and note if different from what is required and make a notation of any samples not received on ice. Note any incorrect sample containers or preservation on chain-of-custody. **Cool means cooled to $\leq 6^{\circ}$ C but not frozen.

Preservation Checked By

Date

Time

kdy 7/10/08 Q:\Form Masters\1000.0-3.2 Sample Preservation Form

1000.0-3.2

Environmental Laboratories Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013 State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Report of Sample Analysis

Southwest Geoscience	Page: Page 1 of 11
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/30/11 17:32

Attached is our analytical report for the samples received for your project. Below is a list of your individual sample descriptions with our corresponding laboratory number. We also have enclosed a copy of the Chain of Custody that was received with your samples and a form documenting the condition of your samples upon arrival. Please note any unused portion of the samples may be discarded upon expiration of the EPA holding time for the analysis performed or after 30 days from the above report date, unless you have requested otherwise.

ERMI Environmental Laboratories certifies that all results contained in this report were produced in accordance with the requirements of the National Environmental Laboratory Accreditation Program (NELAP) unless otherwise noted. The results presented apply to the samples analyzed in accordance with the chain-of-custody document(s) furnished with the samples. This report is intended for the sole use of the customer for whom the work was performed and must be reproduced, without modification, in its entirety.

Sample Identification

Laboratory ID #	Client Sample ID	Matrix	Sampled Date/Time	Received Date/Time
1111547-01	SC-SED 4	Solid	11/18/11 09:10	11/18/11 17:05
1111547-02	SC-SED 3	Solid	11/18/11 09:25	11/18/11 17:05
1111547-03	SC-SED 2	Solid	11/18/11 09:35	11/18/11 17:05
1111547-04	SC-SED 1	Solid	11/18/11 09:50	11/18/11 17:05

Environmental Laboratories Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013 State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Report of Sample Analysis

Southwest Geoscience	Page:	Page 2 of 1	1
2351 W. Northwest Hwy, Suite 3321	Project:	SC Sedin	nent Sampling
Dallas, TX 75220	Project #:	011127	78
ATTN: Liz Scaggs	Print Date	/Time:	11/30/11 17:32

The analytical data and results contained in this report, as well as their supporting data, conform with Texas Risk Reduction Program (TRRP), 30 TAC, Section 350, requirements and are of sufficient and documented quality to meet both TRRP objectives, TCEQ regulatory guidance No. RG-366/TRRP-13 and the project-based objective of achieving the lowest method detection limit (i.e., the TRRP Critical PCL where reasonably achievable or, if not reasonably achievable, the MQL). All information concerning analytical parameters, methods and protocols that might bear upon or otherwise affect the accuracy of the analytical data in this report have been provided or otherwise disclosed herein. The data were obtained using applicable and appropriate EPA SW-846 or Texas Commission on Environmental Quality approved analytical protocols, methodologies and quality assurance/quality control standards. **ERMI Environmental Laboratories** certifies that its quality control program is substantially and materially consistent with the International Organization for Standardization "Guide 25: General Requirements the Competence of Calibration and Testing Laboratories (ISO 25 3rd Edition, 1990)," as amended or the quality standards outlined in the National Environmental Laboratory Accreditation Program, as amended. The entire analytical data package for this report, including the supporting quality control data, will be retained and maintained for at least five (5) years (or such longer period of time as may be required by TRRP) from the report date at the offices of **ERMI Environmental Laboratories**, **400 W. Bethany, Suite 190, Allen, Texas 75013.**

I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Thank you for the opportunity to serve your environmental chemistry analysis needs. If you have any questions or concerns regarding this report please contact our Customer Service Department at the phone number below.

Respectfully submitted,

Sall K. Brown

Kendall K. Brown President

TRRP Rpt 5 - v.2.5-071510

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Page: Page 3 of 11
Project: SC Sediment Sampling
Project #: 0111278
Print Date/Time: 11/30/11 17:32

Laboratory ID #: 1111547-01 Sample Description SC-SED 4	<u>Sample Type</u> Grab	<u>Matrix</u> Solid <u>Sample Date/Time</u> 11/18/11 0910					<u>Sample (</u> Jason Mir Koehnan/	<u>Collected By</u> hter/John Tommy Kim	Customer		
Analyte(s)	Result	SDL	MQL	Units	F*	Inst	Batch	Analysis Date/Time	Anlst	Flag	
Conventional Chemistry	Parameters, EPA 3	.00.0			-						
Sulfate (Total) as SO4	69.8	0.180	1	mg/kg dry	1.00	12	1K22017	11/22/11 1424	ANM		
Conventional Chemistry	Parameters, SM 25	40G									
% Solids	72	0.040	0.2	%	1.00	W3	1K22018	11/22/11 1548	KTF		
Metals (Total), EPA 3050 Acid Digestion of Sludges/Solids	B Completed	N/A	N/A	-	49.02	DB1	1K28040	11/28/11 0821	MDG		
Metals (Total), EPA 6010	B										
Arsenic	12.0	0.43	0.25	mg/kg dry	4.90	M4	1K28040	11/29/11 0200	SPS	Q-20, Q-22, R-01	
Cadmium	0.95	0.50	0.221	mg/kg dry	4.90	M4	1K28040	11/29/11 0200	SPS	Q-20, R-01, J	
Lead	39.1	0.95	0.42	mg/kg dry	4.90	M4	1K28040	11/29/11 0200	SPS	Q-20, Q-22, R-01	
Selenium	ND	1.09	0.4	mg/kg dry	4.90	M4	1K28040	11/29/11 0200	SPS	R-01	

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Southwest Geoscience	Page: Page 4 of 11
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/30/11 17:32

Laboratory ID #: 1111547-02 Sample Description SC-SED 3	<u>Sample Type</u> Grab		<u>Matrix</u> Solid <u>Sample Date/Time</u> 11/18/11 0925				Sample Collected By Jason Minter/John Koehnan/Tommy Kim			mer	
Analyte(s)	Result	SDL	MQL	Units	F*	Inst	Batch	Analysis Date/Time	Anlst	Flag	
Conventional Chemistry	y Parameters, EPA 3	00.0							•		
Sulfate (Total) as SO4	85.5	0.170	1	mg/kg dry	1.00	12	1K22017	11/22/11 1443	ANM		
Conventional Chemistry	y Parameters, SM 25	40G									
% Solids	76	0.040	0.2	%	1.00	W3	1K22018	11/22/11 1548	KTF		
Metals (Total), EPA 305	0B										
Acid Digestion of Sludges/Solids	Completed	N/A	N/A	-	50.51	DB1	1K28040	11/28/11 0821	MDG		
Metals (Total), EPA 601	0B										
Arsenic	18.6	0.42	0.25	mg/kg dry	5.05	M4	1K28040	11/29/11 0018	SPS	R-01	
Cadmium	2.01	0.49	0.221	mg/kg dry	5.05	M4	1K28040	11/29/11 0018	SPS	R-01	
Lead	63.8	0.92	0.42	mg/kg dry	5.05	M4	1K28040	11/29/11 0018	SPS	R-01	
Selenium	ND	1.06	0.4	mg/kg dry	5.05	M4	1K28040	11/29/11 0018	SPS	R-01	

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Southwest Geoscience	Page: Page 5 of 11
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/30/11 17:32

Laboratory ID #: 1111547-03 Sample Description SC-SED 2	<u>Sample Type</u> Grab		<u>Matrix</u> Solid <u>Sample Date/Time</u> 11/18/11 0935				Sample Collected By Jason Minter/John Koehnan/Tommy Kim			stomer	
Analyte(s)	Result	SDL	MQL	Units	F*	Inst	Batch	Analysis Date/Time	Anist	Flag	
Conventional Chemistr	y Parameters, EPA 3	00.0							•		
Sulfate (Total) as SO4	87.8	0.194	1	mg/kg dry	1.00	12	1K22017	11/22/11 1548	ANM		
Conventional Chemistr	y Parameters, SM 25	40G									
% Solids	67	0.040	0.2	%	1.00	W3	1K22018	11/22/11 1548	KTF		
Metals (Total), EPA 305	0B										
Acid Digestion of Sludges/Solids	Completed	N/A	N/A	-	48.08	DB1	1K28040	11/28/11 0821	MDG		
Metals (Total), EPA 601	0B										
Arsenic	11.2	0.45	0.25	mg/kg dry	4.81	M4	1K28040	11/29/11 0026	SPS	R-01	
Cadmium	0.75	0.53	0.221	mg/kg dry	4.81	M4	1K28040	11/29/11 0026	SPS	R-01, J	
Lead	46.9	1.01	0.42	mg/kg dry	4.81	M4	1K28040	11/29/11 0026	SPS	R-01	
Selenium	ND	1.15	0.4	mg/kg dry	4.81	M4	1K28040	11/29/11 0026	SPS	R-01	

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Southwest Geoscience	Page: Page 6 of 11
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/30/11 17:32

Laboratory ID #: 1111547-04 Sample Description SC-SED 1	<u>Sample Type</u> Grab	Matrix Solid Sample Date/Time 11/18/11 0950						<u>Collected By</u> Iter/John Tommy Kim	Customer		
Analyte(s)	Result	SDL	MQL	Units	F*	Inst	Batch	Analysis Date/Time	Anlst	Flag	
Conventional Chemistry	/ Parameters, EPA 3	00.0	•	•					•		
Sulfate (Total) as SO4	39.3	0.168	1	mg/kg dry	1.00	12	1K22017	11/22/11 1621	ANM		
Conventional Chemistry	/ Parameters, SM 25	40G									
% Solids	77	0.040	0.2	%	1.00	W3	1K22018	11/22/11 1548	KTF		
Metals (Total), EPA 3050)B										
Acid Digestion of Sludges/Solids	Completed	N/A	N/A	-	52.63	DB1	1K28040	11/28/11 0821	MDG		
Metals (Total), EPA 6010)B										
Arsenic	11.9	0.43	0.25	mg/kg dry	5.26	M4	1K28040	11/29/11 0034	SPS	R-01	
Cadmium	0.61	0.50	0.221	mg/kg dry	5.26	M4	1K28040	11/29/11 0034	SPS	R-01, J	
Lead	38.2	0.95	0.42	mg/kg dry	5.26	M4	1K28040	11/29/11 0034	SPS	R-01	
Selenium	ND	1.09	0.4	mg/kg dry	5.26	M4	1K28040	11/29/11 0034	SPS	R-01	

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Report of Sample Analysis

Southwest Geoscience	Page: I	Page 7 of 1	1
2351 W. Northwest Hwy, Suite 3321	Project:	SC Sedin	nent Sampling
Dallas, TX 75220	Project #:	011127	'8
ATTN: Liz Scaggs	Print Date/	/Time:	11/30/11 17:32

Conventional Chemistry Parameters - Quality Control

Analyte(s)	Result	*SDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Blank (1K22017-Bl K1)										
Prepared: 11/22/11 12:30 Analyz	ed: 11/22/11 13:02									
Sulfate (Total) as SO4	ND	0.130	mg/kg wet							
Laboratory Control Sample (1K2 Prepared: 11/22/11 12:30 Analyz	22017-BS1) ed: 11/22/11 13:19									
Sulfate (Total) as SO4	46.3	0.130	mg/kg wet	50.0		93	90-110			
Laboratory Control Sample Dup Prepared: 11/22/11 12:30 Analyz	licate (1K22017-BSD1 ed: 11/22/11 16:38)								
Sulfate (Total) as SO4	47.6	0.130	mg/kg wet	50.0		95	90-110	3	20	
Matrix Spike (1K22017-MS1) 1x Prepared: 11/22/11 12:30 Analyz	ed: 11/22/11 13:52				Source: 1111547-(01				
Sulfate (Total) as SO4	140	0.200	mg/kg dry	76.9	69.8	91	90-110			
Matrix Spike (1K22017-MS2) 1x Prepared: 11/22/11 12:30 Analyz	red [.] 11/22/11 20:44				Source: 1111557-0	07				
Sulfate (Total) as SO4	257	0.221	mg/kg dry	85.1	172	100	90-110			
Matrix Spike Duplicate (1K22017 Prepared: 11/22/11 12:30 Analyz	7-MSD1) 1x :ed: 11/22/11 14:08				Source: 1111547-0	01				
Sulfate (Total) as SO4	141	0.200	mg/kg dry	76.9	69.8	92	90-110	0.6	20	
Matrix Spike Duplicate (1K22017 Prepared: 11/22/11 12:30 Analyz	7-MSD2) 1x :ed: 11/22/11 21:00				Source: 1111557-0	07				
Sulfate (Total) as SO4	257	0.221	mg/kg dry	85.1	172	99	90-110	0.3	20	
Blank (1K22018-BLK1) Prepared & Analyzed: 11/22/11 1	15:48									
% Solids	ND	0.040	%							

<u>State Certifications</u> Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Report of Sample Analysis

Southwest Geoscience	Page:	Page 8 of 1	1
2351 W. Northwest Hwy, Suite 3321	Project:	SC Sedin	nent Sampling
Dallas, TX 75220	Project #:	011127	78
ATTN: Liz Scaggs	Print Date	e/Time:	11/30/11 17:32

Conventional Chemistry Parameters - Quality Control

Analyte(s)	Result	*SDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Duplicate (1K22018-DUP1) Prepared & Analyzed: 11/22/11 15:48				s	ource: 1111493	3-01				
% Solids	1.0	0.040	%		1.1			10	7	Q-26
Duplicate (1K22018-DUP2) Prepared & Analyzed: 11/22/11 15:48				s	ource: 111156	3-01				
% Solids	84	0.040	%		84			0.2	7	

TRRP Rpt 5 - v.2.5-071510

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Report of Sample Analysis

Southwest Geoscience	Page: Page 9 of 11
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/30/11 17:32

Metals (Total) - Quality Control

				Spike	Source		%REC		RPD	
Analvte(s)	Result	*SDL	Units	Level	Result	%REC	LIMITS	RPD	Limit	Fiag
Blank (1K28040-BLK1) Prepared & Analyzed: 11/28/11 0	8:21									
Acid Digestion of Sludges/Solids	Completed	N/A	-							
Arsenic	ND	0.06	mg/kg wet							
Cadmium	ND	0.07	mg/kg wet							
Lead	ND	0.14	mg/kg wet							
Selenium	ND	0.16	mg/kg wet							
Laboratory Control Sample (1K2 Prepared & Analyzed: 11/28/11 0	8040-BS1) 8:21									
Acid Digestion of Sludges/Solids	Completed	N/A	-				0-0			
Arsenic	21.2	0.06	mg/kg wet	24.5		86	80-120			
Cadmium	22.3	0.07	mg/kg wet	24.5		91	80-120			
Lead	21.6	0.14	mg/kg wet	24.5		88	80-120			
Selenium	43.0	0.16	mg/kg wet	49.0		88	80-120			
Laboratory Control Sample Dupl Prepared & Analyzed: 11/28/11 0	licate (1K28040-B 8:21	SD1)								
Acid Digestion of Sludges/Solids	Completed	N/A	-				0-0		0	
Arsenic	22.6	0.06	mg/kg wet	25.3		89	80-120	7	20	
Cadmium	23.6	0.07	mg/kg wet	25.3		93	80-120	6	20	
Lead	22.8	0.14	mg/kg wet	25.3		90	80-120	5	20	
Selenium	45.3	0.16	mg/kg wet	50.5		90	80-120	5	20	
Matrix Spike (1K28040-MS1) Prepared & Analyzed: 11/28/11 0	8:21				Source: 111154	1 7-01				
Acid Digestion of Sludges/Solids	Completed	N/A	-		ND		0-0			
Arsenic	55.3	0.86	mg/kg dry	33.9	12.0	128	75-125			Q-02, R-01
Cadmium	37.8	1.00	mg/kg dry	33.9	0.95	109	75-125			R-01
Lead	92.3	1.90	mg/kg dry	33.9	39.1	157	75-125			Q-02, R-01
Selenium	66.3	2.17	mg/kg dry	67.9	ND	98	75-125			R-01

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Report of Sample Analysis

Southwest Geoscience	Page: Page 10 of 11
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/30/11 17:32

Metals (Total) - Quality Control

Analyte(s)	Result	*SDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Matrix Spike (1K28040-MS2) Prepared & Analyzed: 11/28/11	08:21			;	Source: 111155	7-05				
Acid Digestion of Sludges/Solids	Completed	N/A	-		ND		0-0			
Arsenic	42.9	0.77	mg/kg dry	30.7	12.7	99	75-125			R-01
Cadmium	31.2	0.91	mg/kg dry	30.7	0.79	99	75-125			R-01
Lead	75.9	1.72	mg/kg dry	30.7	27.7	157	75-125			Q-02, R-01
Selenium	58.0	1.96	mg/kg dry	61.3	ND	95	75-125			R-01
Matrix Spike Duplicate (1K2804 Prepared & Analyzed: 11/28/11	10-MSD1) 08:21			:	Source: 111154	7-01				
Acid Digestion of Sludges/Solids	Completed	N/A	-		ND		0-0		0	
Arsenic	42.5	0.90	mg/kg dry	35.7	12.0	85	75-125	26	20	Q-04, R-01
Cadmium	45.8	1.06	mg/kg dry	35.7	0.95	126	75-125	19	20	Q-02, R-01
Lead	67.8	2.00	mg/kg dry	35.7	39.1	81	75-125	31	20	Q-04, R-01
Selenium	72.2	2.28	mg/kg dry	71.4	ND	101	75-125	8	20	R-01
Matrix Spike Duplicate (1K2804 Prepared & Analyzed: 11/28/11	10-MSD2) 08:21			:	Source: 111155	7-05				
Acid Digestion of Sludges/Solids	Completed	N/A	-		ND		0-0		0	
Arsenic	40.1	0.74	mg/kg dry	29.5	12.7	93	75-125	7	20	R-01
Cadmium	29.9	0.87	mg/kg dry	29.5	0.79	99	75-125	4	20	R-01
Lead	65.4	1.65	mg/kg dry	29.5	27.7	128	75-125	15	20	Q-02, R-01
Selenium	56.0	1.89	mg/kg dry	58.9	ND	95	75-125	4	20	R-01

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Report of Sample Analysis

Southwest Geoscience	Page: Page 11 of 11
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/30/11 17:32

Notes and Definitions

The results presented in this report were generated using those methods given in 40 CFR Part 136 for Water and Wastewater samples and in SW-846 for RCRA/Solid Waste samples.

J	This value is above the method detection limit but below the reporting limit.
Q-02	The recovery of this analyte in the MS was outside the acceptable range due to interference, large dilutions required for analysis or a combination of these factors. The recovery of this analyte in the LCS(s) was within the acceptable range.
Q-04	The RPD of this analyte between the MS(s) was outside of the acceptable range. The RPD of this same analyte between the LCS(s) was within the acceptable range.
Q-20	The recovery of this analyte in the MS was higher than the acceptable range. This indicates a high bias to the result presented.
Q-22	The RPD between the MS(s) sample analyses was outside the acceptable range. This indicates the result was not as precise as expected.
Q-26	The RPD between duplicate analyses was outside of the acceptable range. This indicates the result was not as precise as expected.
R-01	The higher reporting limit is due to dilutions required for analysis as a result of a high concentration of target and/or non-target parameters in this sample.
ND	Analyte NOT DETECTED at or above the reporting limit
dry	Sample results reported on a dry weight basis
LCS/LCSD	Laboratory Control Sample/Laboratory Control Sample Duplicate
MS/MSD	Matrix Spike/Matrix Spike Duplicate
RPD	Relative Percent Difference
mg/kg	milligrams per kilogram
mg/l	milligrams per liter
ug/kg	micrograms per kilogram
ug/l	micrograms per liter
exc	Not covered under scope of NELAP accreditation.
F*	Calculated factor rounded to 3 significant figures. Concentration factor when <1.00 and dilution factor when >1.00.
Inst	Instrument Identification
Anlst	Analyst Initials
SDL	Sample Detection Limit
MQL	Method Quantitation Limit
naa	This analysis/parameter is not accreditable under the current NELAP program

Laboratory Data Package Cover Page

This data package for Laboratory Job Number 1111547 consists of:

\checkmark	This s	signature page, the laboratory review checklist, and the following reportable data:
	R1 R2 R3	 Field chain-of-custody documentation; Sample identification cross-reference; Test reports (analytical data sheets) for each environmental sample that includes: a) Items consistent with NELAC 5.13 or ISO/IEC 17025 Section 5.10 b) dilution factors, c) preparation methods, d) cleanup methods, and e) if required for the project, tentatively identified compounds (TICs).
\checkmark	R4	Surrogate recovery data including: a) Calculated recovery (%R), and b) The laboratory's surrogate QC limits.
\checkmark	R5 R6	 Test reports/summary forms for blank samples; Test reports/summary forms for laboratory control samples (LCSs) including: a) LCS spiking amounts, b) Calculated %R for each analyte, and c) The laboratory's LCS QC limits.
	R7	 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: a) Samples associated with the MS/MSD clearly identified, b) MS/MSD spiking amounts, c) Concentration of each MS/MSD analyte measured in the parent and spiked samples, d) Calculated %Rs and relative percent differences (RPDs), and e) The laboratory's MS/MSD QC limits
	R8	 Laboratory analytical duplicate (if applicable) recovery and precision: a) the amount of analyte measured in the duplicate, b) the calculated RPD, and c) the laboratory's QC limits for analytical duplicates.
✓ ✓	R9 R10	List of method quantitation limits (MQLs) for each analyte for each method and matrix; Other problems or anomalies.
\checkmark	The E	Exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release Statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: [] This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Genball X. Brown President

11/30/11

Kendall K. Brown Name (Printed)

Signature

Official Title (Printed)

Date

Labo	rato	ry Name: ERMI Environmental Laboratories	LRC Date:	11/30/11					
Proie	ct N	ame: SC Sediment Sampling	Laboratory Job Number:	1111547					
Revie	wer	Name: Leslie Underwood	Prep Batch Number(s):	1K22017,1K22018,	1K28	8040			
#1	A ²	Description		, ,	Yes	No		NR^4	ER# ⁵
R1	OI	Chain-of-custody (C-O-C)					<u> </u>		
		Did samples meet the laboratory's standard conditions of sample	e acceptability upon receipt?		Х				
		Were all departures from standard conditions described in an ex	ception report?		Х				
R2	OI	Sample and quality control (QC) identification							
		Are all field sample ID numbers cross-referenced to the laborato	ry ID numbers?		Х				
		Are all laboratory ID numbers cross-referenced to the correspon	ding QC data?		Х				
R3	OI	Test reports							
		Were all samples prepared and analyzed within holding times?			Х				
		Other than those results < MQL, were all other raw values brack	eted by calibration standards?		Х				
		Were calculations checked by a peer or supervisor?			Х				
		Were all analyte identifications checked by a peer or supervisor?	?		Х				
		Were sample quantitation limits reported for all analytes not dete	ected?		Х				
		Were all results for soil and sediment samples reported on a dry	weight basis?		Х				
		Were % moisture (or solids) reported for all soil and sediment sa	imples?		Х				
		If required for the project, TICs reported?					Х		
R4	0	Surrogate recovery data				_	_		
		Were surrogates added prior to extraction?					Х		
		Were surrogate percent recoveries in all samples within the labor	ratory QC limits?				Х		
R5	OI	Test reports/summary forms for blank samples							
		Were appropriate type(s) of blanks analyzed?			Х				
		Were blanks analyzed at the appropriate frequency?			Х				
		Were method blanks taken through the entire analytical process	, including preparation and, if app	licable,	Х				
		cleanup procedures?							
		Were blank concentrations < MQL?			Х				
R6	01	Laboratory control samples (LCS):			V	1	1	<u> </u>	
		Vere all COCS included in the LCS?			x				
			la dia anna an diala anna atam 0		×				
		Was each LCS taken through the entire analytical procedure, inc	cluding prep and cleanup steps?		X				
		Was each LCS taken through the entire analytical procedure, ind Were LCSs analyzed at the required frequency?	cluding prep and cleanup steps?		X X X				
		Was each LCS taken through the entire analytical procedure, ind Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory (Cluding prep and cleanup steps?		X X X X				
		Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory (Does the detectability data document the laboratory's capability calculate the SDI s?	cluding prep and cleanup steps? QC limits? to detect the COCs at the MDL us	sed to	X X X X X				
		Was each LCS taken through the entire analytical procedure, ind Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory of Does the detectability data document the laboratory's capability calculate the SDLs? Was the LCSD RPD within QC limits?	Cluding prep and cleanup steps? QC limits? to detect the COCs at the MDL us	sed to	X X X X X X				
R7	OI	Was each LCS taken through the entire analytical procedure, ind Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory of Does the detectability data document the laboratory's capability calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data	Cluding prep and cleanup steps? QC limits? to detect the COCs at the MDL us	sed to	X X X X X X				
R7	OI	Was each LCS taken through the entire analytical procedure, ind Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory of Does the detectability data document the laboratory's capability calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a	Cluding prep and cleanup steps? QC limits? to detect the COCs at the MDL us and MSD?	sed to	x x x x x x x				
R7	OI	Was each LCS taken through the entire analytical procedure, ind Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory O Does the detectability data document the laboratory's capability calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency?	Cluding prep and cleanup steps? QC limits? to detect the COCs at the MDL us and MSD?	sed to	x x x x x x x x x x				
R7	OI	Was each LCS taken through the entire analytical procedure, ind Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory 0 Does the detectability data document the laboratory's capability calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC	Cluding prep and cleanup steps? QC limits? to detect the COCs at the MDL us and MSD? C limits?	sed to	x x x x x x x x x x x				E001
R7	OI	Was each LCS taken through the entire analytical procedure, ind Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory 0 Does the detectability data document the laboratory's capability calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits?	Cluding prep and cleanup steps? QC limits? to detect the COCs at the MDL us and MSD? Climits?	sed to	x x x x x x x x	x			E001 E002
R7 R8	OI	Was each LCS taken through the entire analytical procedure, ind Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory 0 Does the detectability data document the laboratory's capability calculate the SDLS? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits?	Cluding prep and cleanup steps? QC limits? to detect the COCs at the MDL us and MSD? Climits?	sed to	x x x x x x x	× × ×			E001 E002
R7 R8	01	Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory 0 Does the detectability data document the laboratory's capability calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits? Analytical duplicate data Were appropriate analytical duplicates analyzed for each matrix'	Cluding prep and cleanup steps? QC limits? to detect the COCs at the MDL us and MSD? Climits?	sed to	x x x x x x x x x x				E001 E002
R7 R8	OI	Was each LCS taken through the entire analytical procedure, ind Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory 0 Does the detectability data document the laboratory's capability calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS at Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits? Analytical duplicate data Were appropriate analytical duplicates analyzed for each matrix' Were analytical duplicates analyzed at the appropriate frequency	Cluding prep and cleanup steps? QC limits? to detect the COCs at the MDL us and MSD? ; limits? ; y?	sed to	x x x x x x x x x x x x x x				E001 E002
R7 R8	01	Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory C Does the detectability data document the laboratory's capability calculate the SDLS? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits? Analytical duplicate data Were appropriate analytical duplicates analyzed for each matrix' Were analytical duplicates analyzed at the appropriate frequency Were RPDs or relative standard deviations within the laboratory	Cluding prep and cleanup steps? QC limits? to detect the COCs at the MDL us and MSD? j limits? ; y? QC limits?	sed to	x x x x x x x x x x x x	x			E001 E002 E003
R7 R8 R9	01	Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory O Does the detectability data document the laboratory's capability calculate the SDLS? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits? Analytical duplicate data Were appropriate analytical duplicates analyzed for each matrix Were analytical duplicates analyzed at the appropriate frequency Were RPDs or relative standard deviations within the laboratory Method quantitation limits (MQLs):	Cluding prep and cleanup steps? QC limits? to detect the COCs at the MDL us and MSD? Climits? Climits? QC limits?	sed to	x x x x x x x x x x x x x				E001 E002 E003
R7 R8 R9	01	Was each LCS taken through the entire analytical procedure, ind Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory of Does the detectability data document the laboratory's capability calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits? Analytical duplicate data Were appropriate analytical duplicates analyzed for each matrix Were analytical duplicates analyzed at the appropriate frequency Were RPDs or relative standard deviations within the laboratory Method quantitation limits (MQLs): Are the MQLs for each method analyte included in the laboratory	Cluding prep and cleanup steps? QC limits? to detect the COCs at the MDL us and MSD? c limits? ? y? QC limits? y data package?	sed to	x x x x x x x x x x x x x x				E001 E002 E003
R7 R8 R9	01	Was each LCS taken through the entire analytical procedure, ind Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory 0 Does the detectability data document the laboratory's capability calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits? Analytical duplicate data Were appropriate analytical duplicates analyzed for each matrix. Were RPDs or relative standard deviations within the laboratory Method quantitation limits (MQLs): Are the MQLs for each method analyte included in the laboratory Do the MQLs correspond to the concentration of the lowest non-	Cluding prep and cleanup steps? QC limits? to detect the COCs at the MDL us and MSD? Climits? QC limits? QC limits? y? QC limits? y data package? zero calibration standard?	sed to	x x x x x x x x x x x x x x x x x				E001 E002 E003
R7 R8 R9	01	Was each LCS taken through the entire analytical procedure, ind Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory 0 Does the detectability data document the laboratory's capability calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits? Analytical duplicate data Were appropriate analytical duplicates analyzed for each matrix. Were RPDs or relative standard deviations within the laboratory Method quantitation limits (MQLs): Are the MQLs for each method analyte included in the laboratory Do the MQLs correspond to the concentration of the lowest non- Are unadjusted MQLs included in the laboratory data package?	Cluding prep and cleanup steps? QC limits? to detect the COCs at the MDL us and MSD? C limits? QC limits? QC limits? y? QC limits? y data package? zero calibration standard?	sed to	x x x x x x x x x x x x x x x x x x x				E001 E002 E003
R7 R8 R9 R10	01 01 01	Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory O Does the detectability data document the laboratory's capability calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits? Analytical duplicate data Were appropriate analytical duplicates analyzed for each matrix' Were RPDs or relative standard deviations within the laboratory Method quantitation limits (MQLs): Are the MQLs for each method analyte included in the laboratory Do the MQLs correspond to the concentration of the lowest non- Are unadjusted MQLs included in the laboratory data package? Other problems/anomalies	Cluding prep and cleanup steps? QC limits? to detect the COCs at the MDL us and MSD? climits? QC limits? QC limits? y data package? zero calibration standard?	sed to	x x x x x x x x x x x x x x x x x x x	x x x			E001 E002 E003
R7 R8 R9 R10	01 01 01	Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory O Does the detectability data document the laboratory's capability calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits? Analytical duplicate data Were appropriate analytical duplicates analyzed for each matrix? Were RPDs or relative standard deviations within the laboratory Method quantitation limits (MQLs): Are the MQLs for each method analyte included in the laboratory Do the MQLs correspond to the concentration of the lowest non- Are unadjusted MQLs included in the laboratory data package? Other problems/anomalies Are all known problems/anomalies/special conditions noted in the	Cluding prep and cleanup steps? QC limits? to detect the COCs at the MDL us and MSD? imits? imits? QC limits? y? QC limits? y data package? zero calibration standard? is LRC and ER?	sed to	x x x x x x x x x x x x x x x x x x x	x x x			E001 E002 E003
R7 R8 R9 R10	0I 0I 0I	Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory 0 Does the detectability data document the laboratory's capability calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits? Analytical duplicate data Were appropriate analytical duplicates analyzed for each matrix Were analytical duplicates analyzed at the appropriate frequency? Method quantitation limits (MQLs): Are the MQLs for each method analyte included in the laboratory Do the MQLs correspond to the concentration of the lowest non- Are unadjusted MQLs included in the laboratory data package? Other problems/anomalies Are all known problems/anomalies/special conditions noted in the Were all necessary corrective actions performed for the reported	Cluding prep and cleanup steps? QC limits? to detect the COCs at the MDL us and MSD? ind MSD? ind ints? QC limits? y? QC limits? y data package? zero calibration standard? is LRC and ER? I data?	sed to	x x x x x x x x x x x x x x x x x x x				E001 E002 E003
R7 R8 R9 R10	01 01 01	Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory O Does the detectability data document the laboratory's capability calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits? Analytical duplicate data Were appropriate analytical duplicates analyzed for each matrix Were analytical duplicates analyzed at the appropriate frequency? Method quantitation limits (MQLs): Are the MQLs for each method analyte included in the laboratory Do the MQLs correspond to the concentration of the lowest non- Are unadjusted MQLs included in the laboratory data package? Other problems/anomalies Are all known problems/anomalies/special conditions noted in the Were analyticable and available technology used to lower the SDL	Cluding prep and cleanup steps? QC limits? to detect the COCs at the MDL us and MSD? limits? limits? QC limits? y? QC limits? y data package? zero calibration standard? is LRC and ER? I data? to minimize the matrix interference	sed to	x x x x x x x x x x x x x x x x x x x				E001 E002 E003
R7 R8 R9 R10	01 01 01	Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory O Does the detectability data document the laboratory's capability calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits? Analytical duplicate data Were appropriate analytical duplicates analyzed for each matrix Were analytical duplicates analyzed at the appropriate frequency? Were MS/MSD RPDs within laboratory QC limits? Analytical duplicate data Were appropriate analytical duplicates analyzed for each matrix Were analytical duplicates analyzed at the appropriate frequency Were RPDs or relative standard deviations within the laboratory Method quantitation limits (MQLs): Are the MQLs for each method analyte included in the laboratory Do the MQLs correspond to the concentration of the lowest non- Are unadjusted MQLs included in the laboratory data package? Other problems/anomalies Are all known problems/anomalies/special conditions noted in th Were all necessary corrective actions performed for the reported Was applicable and available technology used to lower the SDL on the sample results?	Cluding prep and cleanup steps? QC limits? to detect the COCs at the MDL us and MSD? limits? limits? QC limits? QC limits? y? QC limits? y data package? zero calibration standard? is LRC and ER? I data? to minimize the matrix interference	sed to	x x x x x x x x x x x x x x x x x x x				E001 E002 E003
R7 R8 R9 R10	OI OI OI	Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory O Does the detectability data document the laboratory's capability calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits? Analytical duplicate data Were appropriate analytical duplicates analyzed for each matrix Were analytical duplicates analyzed at the appropriate frequency? Were RPDs or relative standard deviations within the laboratory Method quantitation limits (MQLs) : Are the MQLs for each method analyte included in the laboratory Do the MQLs correspond to the concentration of the lowest non- Are unadjusted MQLs included in the laboratory data package? Other problems/anomalies Are all known problems/anomalies/special conditions noted in th Were all necessary corrective actions performed for the reported Was applicable and available technology used to lower the SDL on the sample results? tifed by the letter TR must be included in the laboratory data package submitted in the TRRP-required repertor.	Cluding prep and cleanup steps? QC limits? to detect the COCs at the MDL us and MSD? imits? imits? QC limits? QC limits? y q data package? zero calibration standard? is LRC and ER? I data? to minimize the matrix interference ort(s). Items identified by the letter "S" should be retain	sed to	X X X X X X X X X X X X X X X X X X X	X X X			E001 E002 E003
R7 R8 R9 R10	OI OI OI	Was each LCS taken through the entire analytical procedure, inc Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboratory O Does the detectability data document the laboratory's capability calculate the SDLs? Was the LCSD RPD within QC limits? Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS a Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC Were MS/MSD RPDs within laboratory QC limits? Analytical duplicate data Were appropriate analytical duplicates analyzed for each matrix' Were analytical duplicates analyzed at the appropriate frequency Were RPDs or relative standard deviations within the laboratory Method quantitation limits (MQLs): Are the MQLs for each method analyte included in the laboratory Do the MQLs correspond to the concentration of the lowest non- Are unadjusted MQLs included in the laboratory data package? Other problems/anomalies Are all known problems/anomalies/special conditions noted in th Were all necessary corrective actions performed for the reported Was applicable and available technology used to lower the SDL on the sample results? the buses i = inorganic analyses (and general chemistry, when applicable); applicable:	Cluding prep and cleanup steps? QC limits? to detect the COCs at the MDL us and MSD? imits? imits? QC limits? QC limits? y? QC limits? y data package? zero calibration standard? is LRC and ER? I data? to minimize the matrix interference ort(s). Items identified by the letter "S" should be retain	sed to	X X X X X X X X X X X X X X X X X X X	X X X			E001 E002 E003

	Laboratory	/ Review	Checklist:	Re	portable	Data
--	------------	----------	-------------------	----	----------	------

5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Labo	rato	y Name: ERMI Environmental Laboratories	LRC Date:	11/30/11					
Proje	ect N	ame: SC Sediment Sampling	Laboratory Job	1111547					
Revi	ewer	Name: Leslie Underwood	Prep Batch Number(s):	1K22017,1K22018,1	K28	040			
# ¹	\mathbf{A}^2	Description			Yes	No	NA ³	NR^4	ER# ⁵
S1	OI	Initial calibration (ICAL)							
		Were response factors and/or relative response factors for each	analyte within QC limits?		Х				
		Were percent RSDs or correlation coefficient criteria met?			Х				
		Was the number of standards recommended in the method used	d for all analytes?		Х				
		Were all points generated between the lowest and highest stand	lard used to calculate the curve?		Х				
		Are ICAL data available for all instruments used?			Х				
		Has the initial calibration curve been verified using an appropria	te second source standard?		Х				
S2	OI	Initial and continuing calibration verification (ICCV and CCV) a	nd continuing calibration						
		Was the CCV analyzed at the method-required frequency?			Х				
		Were percent differences for each analyte within the method-rec	quired QC limits?		Х				
		Was the ICAL curve verified for each analyte?			Х				
		Was the absolute value of the analyte concentration in the inorg	anic CCB < MDL?		Х				
S3	0	Mass spectral tuning:							
		Was the appropriate compound for the method used for tuning?					Х		
		Were ion abundance data within the method-required QC limits?	?				Х		
S4	0	Internal standards (IS):					-		
		Were IS area counts and retention times within the method-requ	ired QC limits?				Х		
S5	OI	Raw data (NELAC section 1 appendix A glossary, and section	5.12 or ISO/IEC 17025 section						
		Were the raw data (for example, chromatograms, spectral data)	reviewed by an analyst?		Х				
		Were data associated with manual integrations flagged on the ra	aw data?		Х				
S6	0	Dual column confirmation							
	_	Did dual column confirmation results meet the method-required	QC?				X		
S 7	0	I entatively identified compounds (TICs):							
		If TICs were requested, were the mass spectra and TIC data su	bject to appropriate checks?				X		
58	-	Interference Check Sample (ICS) results:		1	V				
60		Seriel dilutions, post direction onikes, and method of standard	Additiona		^				
39		Were percent differences, recoveries, and the linearity within the	A OC limits specified in the method	2	X			<u>г</u>	
\$10		Method detection limit (MDL) studies	e de limits specified in the method	:	^				
510		Was a MDL study performed for each reported analyte?			X				
		Is the MDL either adjusted or supported by the analysis of DCSs	22		X				
S11	OI	Proficiency test reports:			~			II.	
	<u> </u>	Was the laboratory's performance acceptable on the applicable	proficiency tests or evaluation stud	ies?	Х				
S12	OI	Standards documentation							
		Are all standards used in the analyses NIST-traceable or obtain	ed from other appropriate sources?	,	Х				
S13	OI	Compound/analyte identification procedures						LL	
		Are the procedures for compound/analyte identification docume	nted?		Х				
S14	OI	Demonstration of analyst competency (DOC)							
		Was DOC conducted consistent with NELAC Chapter 5C or ISC	0/IEC 4?		Х				
		Is documentation of the analyst's competency up-to-date and or	n file?		Х				
S15	OI	Verification/validation documentation for methods (NELAC Ch	ap 5 or ISO/IEC 17025 Section 5)						
		Are all the methods used to generate the data documented, veri	fied, and validated, where applicab	le?	Х				
S16	OI	Laboratory standard operating procedures (SOPs):							
		Are laboratory SOPs current and on file for each method perform	ned?		Х				
1 14			T000						

Laboratory	Review	Checklist:	Reportable	Data
------------	--------	-------------------	------------	------

1. Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

2. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);

3. NA = Not applicable;

4. NR = Not reviewed;

5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laborato	m. Nomo			11/30/11			
Laborator	ry Name:	ERMI Environmental Laboratories	LRC Date:	4444547			
Project N	ame:	SC Sediment Sampling	Laboratory Job	1111547			
Reviewer	Name:	Leslie Underwood	Prep Batch Number(s):	1K22017,1K22018,1K28040			
ER# ¹	Description	1					
E001	Matrix Spik - The reco combination batch. The	e Recovery for Arsenic (128%) was outside accepta very of this analyte in the MS was outside the accept n of these factors. This indicates a high bias to the r recovery of this analyte in the LCS(s) was within the	nce limits (75-125) in 1K28040-N table range due to interference, esult presented for the source se acceptable range.	VS1 for As Total ICP 6010B large dilutions required for analysis or a ample (1111547-01) reported from this			
	Matrix Spik - The reco combination batch. The	e Recovery for Lead (157%) was outside acceptance very of this analyte in the MS was outside the accept n of these factors. This indicates a high bias to the r recovery of this analyte in the LCS(s) was within the	e limits (75-125) in 1K28040-MS table range due to interference, esult presented for the source si e acceptable range.	1for Pb Total ICP 6010B large dilutions required for analysis or a ample (1111547-01) reported from this			
	Matrix Spike Recovery for Lead (157%) was outside acceptance limits (75-125) in 1K28040-MS2 for Pb Total ICP 6010B - The recovery of this analyte in the MS was outside the acceptable range due to interference, large dilutions required for analysis or a combination of these factors. The recovery of this analyte in the LCS(s) was within the acceptable range.						
	Matrix Spike Recovery for Cadmium (126%) was outside acceptance limits (75-125) in 1K28040-MSD1 for Cd Total ICP 6010B - The recovery of this analyte in the MS was outside the acceptable range due to interference, large dilutions required for analysis or a combination of these factors. This indicates a high bias to the result presented for the source sample (1111547-01) reported from this batch. The recovery of this analyte in the LCS(s) was within the acceptable range.						
	Matrix Spik - The recor combination	e Recovery for Lead (128%) was outside acceptance very of this analyte in the MS was outside the accept n of these factors. The recovery of this analyte in the	e limits (75-125) in 1K28040-MS able range due to interference, l e LCS(s) was within the accepta	D2 for Pb Total ICP 6010B large dilutions required for analysis or a ble range.			
E002	Matrix Spik - The RPD expected for the accepta	e Duplicate RPD for Arsenic (26%) was above the ar of this analyte between the MS(s) was outside of the or the source sample (1111547-01) reported from this able range.	cceptance limit (20) in 1K28040- e acceptable range. This indica s batch. The RPD of this same a	MSD1 for As Total ICP 6010B tes the result was not as precise as analyte between the LCS(s) was within			
	Matrix Spik - The RPD expected for the accepta	e Duplicate RPD for Lead (31%) was above the acce of this analyte between the MS(s) was outside of the or the source sample (1111547-01) reported from this able range.	eptance limit (20) in 1K28040-M: e acceptable range. This indica s batch. The RPD of this same a	SD1 for Pb Total ICP 6010B tes the result was not as precise as analyte between the LCS(s) was within			
E003	Duplicate F - The RPD	PD for % Solids (10%) was above the acceptance li between duplicate analyses was outside of the acce	mit (7) in 1K22018-DUP1 for Dry eptable range. This indicates the	y Weight 2540G e result was not as precise as expected.			

Laboratory	Review	Checklist:	Exception	Reports

1. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked on the LRC)

Southware Examples Examples International Advances Lebonstroy E/A/L International Advances Lebonstroy E/A/L International Advances Lebonstroy E/A/L International Advances Contract Participation Internatin Partin Participation													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		thv		est	Laborat	ory:	12K	IW		A A	IALYSIS EQUESTED		Due Date:
tech Location <u>Part Me, 所</u> Penone: <u>マイス 77</u> -7123 Penone: <u>マイス 77</u> -7250 Penone: <u>マイス 77-7750</u> Penone: <u></u> C/2777777777777777777777777777777777777	Environmental &	Hydrogec	J L I	Consultants	Addres								Temp. of coolers when geeived (C°):
Open Manager Lit Curve Prome. 717 729 Lit Mage	fice Location	₽ ¶	-LI al.	s, R	Contact						p		36 2 3 4 5
					Phone:	97,	927-E	1-1123			5		Page / of /
Control Name	oject Manager	612	SAK	SPE	PO/SO	#:					140		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	mpler's Name				Sampler	s Signatur	2	1		ha.	/ S		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ASON MENTER	ATO MW	Y KIN	1/ JOHN LOON	n v	K I	A		3 T	3- 3-	74/90		
Internet ⁽¹⁾ ⁽²⁾ ⁽¹⁾ ⁽²⁾ ⁽	01/127	<u>م</u>	roject ₇	Name CSED/	MENT	SAM	SUNG	No/Type	of Contain	ers			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	trix Date	Time	DoEd Drad	Identifying Ma	arks of Sam	ple(s) Start	Depth End Depth	A NOA -	VG 250 Lt. ml	O/d			Lab Sample ID (Lab Use Only)
0 $ $	5 W/18/10 C	0160	$\left \right\rangle$; 5C-SE	1 G	0	0			2	X		10:02/11/
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5 11/18/10 C	5860	X	50-32	£ a		9			X -	×		65-CHS1111
$ \left $	11/18/11	386	×	SC-JE	2 Q	0	0			<u>R</u>	8		5~6751111
maround time	5 11/18/11 0	950	×	32-2E	- ¢		00			1 2	R		4- CH21111
Incorrection Model Disk Rush Disk Rush Disk Rush Disk Rush Incorrecting of by (Signature) Disk Rush Disk Rush Disk Rush Disk Rush Incorrecting of by (Signature) Disk Disk Rush Disk Rush Disk Rush Incorrecting of by (Signature) Disk Disk Disk Disk Inquished by (Signature) Disk Time: Received by: (Signature) Disk Inquished by (Signature) Date: Time: Time: Disk Disk Inquished by (Signature) Date: Time: Received by: (Signature) Disk Disk Inquished by (Signature) Date: Time: Received by: (Signature) Disk Disk Signature) Inquished by (Signature) Date: Time: Received by: (Signature) Date: Time: Inquished by (Signature) Date: Time: Received by: (Signature) Date: Line: Inquished by (Signature) Date: Time:													
International Constraint Constraint Constraint Constraint Industried by Signature) Date: Time: Received by Signature) Date: Inquished by Signature) Date: Time: Received by Signature) Date: Time: Inquished by Signature) Date: Time: Received by Signature) Date: Time: Inquished by Signature) Date: Time: Received by Signature) Date: Constraint Inquished by Signature) Date: Time: Constraint Constraint Solutiont Inquished by Signature) Date: Time: Constraint Constraint Solutiont Inquished by Signature) Date: Time: Constraint Constraint Solutiont Mather Xot - 40													
Inound time Mormal 25% Rush 50% Rush 100% Rush Inordibled by (Signature) Date: Time: Received by: (Signature) Inordibled by (Signature) Date: Time: Received by: (Signature) Inordished by (Signature) Date: Time: Received by: (Signature) Induitished by (Signature) Date: Time: Received by: (Signature) Inquished by (Signature) Date: Time: Received by: (Signature)													
marcund time Mormal 25% Rush 50% Rush 100% Rush Inportabed by (Signature) Mormal 25% Rush 50% Rush 100% Rush Inportabed by (Signature) Mormal 25% Rush 50% Rush 100% Rush Inportabed by (Signature) Mormal 25% Rush 100% Rush 100% Rush Inportabed by (Signature) Mormal 12% Rush 11/6 Rush 11/6 Rush Information by (Signature) More More 11/2 Rush 11/2 Rush Information by (Signature) Date: Time: More 11/2 Rush Information by (Signature) Date: Time: Date: Time: Information by (Signature) Date: Time: More Date: Time: Information by (Signature) Date: Time: Received by: (Signature) Date: Time: Information by (Signature) Date: Time: Received by: (Signature) Date: Time: Information by Signature) Date: Time: Received by: (Signature) Date: Time: Information by Signature) Date: Time: Received by: (Signature) Date: Time: Rt WV - 40 min vial WO - 40 min vial More - 40 min vial Pr													
Inparts of by (Signature) Date: Time: NOTES: MM AM AM AM AM AM Molished by (Signature) Date: Time: Received by: (Signature) Date: Time: Inquished by (Signature) Date: Time: Received by: (Signature) Date: Time: Inquished by (Signature) Date: Time: Received by: (Signature) Date: Time: Inquished by (Signature) Date: Time: Received by: (Signature) Date: Time: Inquished by (Signature) Date: Time: Received by: (Signature) Date: Time: Inquished by (Signature) Date: Time: Received by: (Signature) Date: Time: Inquished by (Signature) Date: Time: Received by: (Signature) Date: Time: Inquished by (Signature) Date: Time: Signature)	n around time	Norme] 25% Rush	□ 50% Rus		0% Rush						
Industried Mate: Time: Bate: Time: Bate: Time: Inquished by (Signature) Date: Time: Received by: (Signature) Date: 1/10/100 Inquished by (Signature) Date: Time: Received by: (Signature) Date: Time: Inquished by (Signature) Date: Time: Received by: (Signature) Date: Time: Inquished by (Signature) Date: Time: Received by: (Signature) Date: Time: Inquished by (Signature) Date: Time: Received by: (Signature) Date: Time: Inquished by (Signature) Date: Time: Date: Time: Image: Inquished by (Signature) Date: Time: Received by: (Signature) Date: Time: Inquished by (Signature) Date: Time: Date: Time: Time: Inquished by (Signature) Not - 40 mi vial W- Wastewater W- Water S - Solid L- Liquid A - Air Bag C - Charcoal tube S - sludge O - Oil	lingersheet by (Sic	anature)	7	Pate:	Time:	Received	by: (Sign	Jurg		Date:	Time: /6 20	NOTES:	
Inquished by (Signature) Date: Time: Received by: (Signature) Date: Time: Inquished by (Signature) Date: Time: Date: Time: Inquished by (Signature) Date: Time: Received by: (Signature) Date: Inquished by (Signature) Date: Time: Received by: (Signature) Date: Inquished by (Signature) Date: Time: Note: Time: trix WW - Wastewater W - Water S - Solid L - Liquid A - Air Bag C - Charcoal tube SL - sludge O - Oil tainer VOA - 40 mi vial A/G - Amber / Or Glass 1 Liter 250 ml - Glass wide mouth P/O - Plastic or other O - Oil	linguished by (Sig	Mature)		IPate: 1-	105 C	Received	by (Sign	ature) ER	0	Date ////////////////////////////////////	Time: 1705		
Inquished by (Signature) Date: Time: Inquished by (Signature) Date: Time: trix WW - Wastewater W - Wastewater World and the statewater W - Wastewater S - Soil SD - Solid L - Liquid A - Air Bag C - Charcoal tube Notationer NG - Amber / Or Glass 1 Liter 250 ml - Glass wide mouth P/O - Plastic or other	linquished by (Siç	jnature) (2	Date:	Time:	Received	by: (Sign	ature)		Date:	Time:		
rix WW - Wastewater W - Water S - Soil SD - Solid L - Liquid A - Air Bag C - Charcoal tube SL - sludge O - Oil tainer VOA - 40 ml vial A/G - Amber / Or Glass 1 Liter 250 ml - Glass wide mouth P/O - Plastic or other	linquished by (Siç	jnature)		Date:	Time:	Received	by: (Sign	ature)		Date:	Time:		
	rrix WW - V ntainer VOA -	Wastewater 40 ml vial		W - Water A/G - Amber / (S - Soil 5 Or Glass 1 L	SD - Solid iter	L - Liqu 250 ml	iid A - A - Glass wide	ir Bag e mouth	C - Char P/O - Pl ₆	rcoal tube astic or other	SL - sludge 0 - 0	

SOUTHWEST GEOSCIENCE • 2351 W. Northwest Hwy., Suite 3321 • Dallas, Texas 75220 • Office: 214-350-5469 • Fax 214-350-2914

MI 547

STATES STATES

		NOTARY SERVICE AVAILABLE		No.
		ADDRESS MAALA TOllway I Cotton Can SUITE	DATE 11-18-	(]
a a	CIPTESS	ECTTY PRISCO TA AL	Falcon Charge	es Type of Delivery
	P.O. BOX 940303	REFERENCE NO.		□ X-Press □ 2 HOUR
¥	PLANO, TX 75094-0303 (972) 881-7577	arth:	ROUND TRIP	A HOUR
NO. PCS.	CIADAA M Ro	DESCRIPTION AND REMARKS	WEIGHT	CHARGES
	SMMPLED		WEI CHA	IGHT NRGE
			WAT	TING
			DEL	VERY
WAITING TH NOT RESP CONCEAL	NE CONSIBLE FOR FREIGHT CLAIMS AFTER 72 H	IRS. NOT RESPONSIBLE FOR \$50 DECLARED VALUE LIN COUNTY, TEXAS UNLEAS SPECIFIED HERE \$	TOTAL CHARGES	3
ÓRIVER NAM	DRIVER NAME & NO	TIME OBOST	RECEIVED BY	
DATE: SAMPLE I. SAMPLE T. GRAB PARAMETE	ERMI Environmental Laboratoria Bethany Tech Cent 400 W. Bethany, Tech Cent 972 27-1123 (190) + 800-228 972 7-1123 (190) + 800-228 (190) + 800-228 (190) + 800-228 (190) + 800-228 (190)	COMNERS COMNERS COLLECTED BY: PRESERVED: PRESERVED: DTHER DTHER MI : C LE NO.: X-409		
ERN DATE: SAMPLE I.D.: SAMPLE TYPE GRAB PARAMETERS	ERMI Environmental Laboratories Bethany Tech Center 400 W. Bethany. Suite 19 Allen, Texas 75013 972-727-1123 (Local), rt 228-ERM 972-707-1175 (Fermionic Content of the second 972-707-1175 (Fermionic Content	CONTAINERS		

Lab Number(s): _

111547

ERMI **Sample Preservation Documentation***

On Ice (Circle One): YES OR NO (check if on Dry Ice_ ____)

Parameters	Conta #	ainers Size	Required Preservation	Sample Container	Circle pH Note any discrepancy
Metals			pH < 2	Glass or Plastic	pH < 2
Dissolved Metals			Unpreserved prior to being filtered, Cool**	Glass or Plastic	
Hexavalent Chromium			CWA - pH 9.3-9.7, Cool; RCRA - Cool	Glass or Plastic	Checked At Analysis
Semivolatiles, Pesticides, PCBs, Herbicides		-	Cool	Glass only with Teflon lid	Chlorine Dyes Dno
VOA (BTEX, MTBE, 624, 8260, TPH-GRO)			Cool, pH < 2 Zero Head Space	40 ml VOA vial	DO NOT OPEN
VOA (TPH-1005)			Cool, Zero Head Space Please check if collected in pre-weighed vials	40 ml VOA vial	DO NOT OPEN
Phos., NO₃/NO₂, NH₃N, COD, TKN,TOC			Cool, pH < 2	Glass or Plastic	pH < 2
TDS, BOD, CBOD, Cond, pH, TSS, F, SO₄, CI, Alk, Sulfite			Cool	Glass or Plastic, Plastic only if F	
Phenols, TPH-DRO			Cool, pH < 2	Glass only Teflon lid Foil lid	pH < 2
Oil & Grease, TPH (by 1664a)			Cool, pH < 2	Glass only Teflon lid Foil lid	DO NOT Check pH
Cyanide			Cool, pH >12	Glass or Plastic	pH > 12 Chlorine ⊡yes ⊡no Sulfide ⊡yes ⊡no ⊡na
Sulfide	·		Cool, pH > 9	Glass or Plastic	pH > 9
Bacteria			Cool	Plastic Sterile Cup	
Soil, Sludge, S oli d, Dil, Liquid	Ц	gsz	Cool Note: please check if collected in pre-weighed vials	glan	

*This form is used to document sample preservation. Circle parameter requested. Fill in number and size of containers received. Check pH (adjust if needed) and note if different from what is required and make a notation of any samples not received on ice. Note any incorrect sample containers or preservation on chain-of-custody **Cool means cooled to ≤6°C but not frozen

Preservation Checked By

1000.0-3.2

Date Time

kdy 7/10/08

Q:\Form Masters\1000.0-3.2 Sample Preservation Form

Environmental Laboratories Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013 State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Report of Sample Analysis

Southwest Geoscience	Page: Page 1 of 14
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/30/11 17:07

Attached is our analytical report for the samples received for your project. Below is a list of your individual sample descriptions with our corresponding laboratory number. We also have enclosed a copy of the Chain of Custody that was received with your samples and a form documenting the condition of your samples upon arrival. Please note any unused portion of the samples may be discarded upon expiration of the EPA holding time for the analysis performed or after 30 days from the above report date, unless you have requested otherwise.

ERMI Environmental Laboratories certifies that all results contained in this report were produced in accordance with the requirements of the National Environmental Laboratory Accreditation Program (NELAP) unless otherwise noted. The results presented apply to the samples analyzed in accordance with the chain-of-custody document(s) furnished with the samples. This report is intended for the sole use of the customer for whom the work was performed and must be reproduced, without modification, in its entirety.

Sample Identification

Laboratory ID #	Client Sample ID	Matrix	Sampled Date/Time	Received Date/Time
1111557-01	SC-SED 18	Solid	11/18/11 16:20	11/19/11 11:40
1111557-02	SC-SED 17	Solid	11/18/11 16:35	11/19/11 11:40
1111557-03	SC-SED 16	Solid	11/18/11 16:45	11/19/11 11:40
1111557-04	SC-SED 15	Solid	11/18/11 16:50	11/19/11 11:40
1111557-05	SC-SED 14	Solid	11/18/11 17:00	11/19/11 11:40
1111557-06	SC-SED 13	Solid	11/18/11 17:10	11/19/11 11:40
1111557-07	SC-SED 12	Solid	11/18/11 17:15	11/19/11 11:40

Environmental Laboratories Bethany Tech Center • Suite 190 400 W. Bethany Rd. • Allen, Texas 75013 State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Report of Sample Analysis

Southwest Geoscience	Page:	Page 2 of 1	4
2351 W. Northwest Hwy, Suite 3321	Project:	SC Sedin	nent Sampling
Dallas, TX 75220	Project #:	011127	78
ATTN: Liz Scaggs	Print Date	e/Time:	11/30/11 17:07

The analytical data and results contained in this report, as well as their supporting data, conform with Texas Risk Reduction Program (TRRP), 30 TAC, Section 350, requirements and are of sufficient and documented quality to meet both TRRP objectives, TCEQ regulatory guidance No. RG-366/TRRP-13 and the project-based objective of achieving the lowest method detection limit (i.e., the TRRP Critical PCL where reasonably achievable or, if not reasonably achievable, the MQL). All information concerning analytical parameters, methods and protocols that might bear upon or otherwise affect the accuracy of the analytical data in this report have been provided or otherwise disclosed herein. The data were obtained using applicable and appropriate EPA SW-846 or Texas Commission on Environmental Quality approved analytical protocols, methodologies and quality assurance/quality control standards. **ERMI Environmental Laboratories** certifies that its quality control program is substantially and materially consistent with the International Organization for Standardization "Guide 25: General Requirements the Competence of Calibration and Testing Laboratories (ISO 25 3rd Edition, 1990)," as amended or the quality standards outlined in the National Environmental Laboratory Accreditation Program, as amended. The entire analytical data package for this report, including the supporting quality control data, will be retained and maintained for at least five (5) years (or such longer period of time as may be required by TRRP) from the report date at the offices of **ERMI Environmental Laboratories**, **400 W. Bethany, Suite 190, Allen, Texas 75013.**

I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Thank you for the opportunity to serve your environmental chemistry analysis needs. If you have any questions or concerns regarding this report please contact our Customer Service Department at the phone number below.

Respectfully submitted,

Sall K. Brown

Kendall K. Brown President

TRRP Rpt 5 - v.2.5-071510

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Page: Page 3 of 14
Project: SC Sediment Sampling
Project #: 0111278
Print Date/Time: 11/30/11 17:07

Laboratory ID #: 1111557-01 Sample Description SC-SED 18	<u>Sample Type</u> Grab	<u>Matrix</u> Solid <u>Sample Date/Time</u> 11/18/11 1620					<u>Sample (</u> Jason Mir Koehnan/	<u>Collected By</u> hter/John Tommy Kim	Customer		
Analyte(s)	Result	SDL	MQL	Units	F*	Inst	Batch	Analysis Date/Time	Anist	Flag	
Conventional Chemistr	y Parameters, EPA 3	0.0							•		
Sulfate (Total) as SO4	190	0.154	1	mg/kg dry	1.00	12	1K22017	11/22/11 1654	ANM		
Conventional Chemistr	y Parameters, SM 25	40G									
% Solids	85	0.040	0.2	%	1.00	W3	1K22018	11/22/11 1548	KTF		
Metals (Total), EPA 305	0B										
Acid Digestion of Sludges/Solids	Completed	N/A	N/A	-	48.08	DB1	1K28040	11/28/11 0821	MDG		
Metals (Total), EPA 601	0B										
Arsenic	8.10	0.36	0.25	mg/kg dry	4.81	M4	1K28040	11/29/11 0010	SPS	R-01	
Cadmium	0.43	0.42	0.221	mg/kg dry	4.81	M4	1K28040	11/29/11 0010	SPS	R-01, J	
Lead	20.5	0.80	0.42	mg/kg dry	4.81	M4	1K28040	11/29/11 0010	SPS	R-01	
Selenium	ND	0.91	0.4	mg/kg dry	4.81	M4	1K28040	11/29/11 0010	SPS	R-01	

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Southwest Geoscience	Page: Page 4 of 14
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/30/11 17:07

Laboratory ID #: 1111557-02 Sample Description SC-SED 17	<u>Sample Type</u> Grab	<u>Matrix</u> Solid <u>Sample Date/Time</u> 11/18/11 1635					Sample Collected By Jason Minter/John Koehnan/Tommy Kim		Custon	ner	
Analyte(s)	Result	SDL	MQL	Units	F*	Inst	Batch	Analysis Date/Time	Anlst	Flag	
Conventional Chemistry	y Parameters, EPA 3	00.0		•							
Sulfate (Total) as SO4	40.2	0.158	1	mg/kg dry	1.00	12	1K22017	11/22/11 1710	ANM		
Conventional Chemistry	y Parameters, SM 25	40G									
% Solids	82	0.040	0.2	%	1.00	W3	1K22018	11/22/11 1548	KTF		
Metals (Total), EPA 305	0B										
Acid Digestion of Sludges/Solids	Completed	N/A	N/A	-	50.00	DB1	1K28040	11/28/11 0821	MDG		
Metals (Total), EPA 601	0B										
Arsenic	18.3	0.38	0.25	mg/kg dry	5.00	M4	1K28040	11/29/11 0244	SPS	R-01	
Cadmium	1.19	0.45	0.221	mg/kg dry	5.00	M4	1K28040	11/29/11 0244	SPS	R-01, J	
Lead	43.1	0.85	0.42	mg/kg dry	5.00	M4	1K28040	11/29/11 0244	SPS	R-01	
Selenium	ND	0.97	0.4	mg/kg dry	5.00	M4	1K28040	11/29/11 0244	SPS	R-01	

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Southwest Geoscience	Page: Page 5 of 14
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/30/11 17:07

Laboratory ID #: 1111557-03 Sample Description SC-SED 16	<u>Sample Type</u> Grab	<u>Matrix</u> Solid <u>Sample Date/Time</u> 11/18/11 1645					<u>Sample (</u> Jason Mir Koehnan/	<u>Collected By</u> hter/John Tommy Kim	Customer		
Analyte(s)	Result	SDL	MQL	Units	F*	Inst	Batch	Analysis Date/Time	Anlst	Flag	
Conventional Chemistry	y Parameters, EPA 3	0.00	•						•		
Sulfate (Total) as SO4	35.6	0.163	1	mg/kg dry	1.00	12	1K22017	11/22/11 1727	ANM		
Conventional Chemistry	y Parameters, SM 25	40G									
% Solids	80	0.040	0.2	%	1.00	W3	1K22018	11/22/11 1548	KTF		
Metals (Total), EPA 305	0B										
Acid Digestion of Sludges/Solids	Completed	N/A	N/A	-	49.50	DB1	1K28040	11/28/11 0821	MDG		
Metals (Total), EPA 601	0B										
Arsenic	14.6	0.39	0.25	mg/kg dry	4.95	M4	1K28040	11/29/11 0252	SPS	R-01	
Cadmium	1.49	0.46	0.221	mg/kg dry	4.95	M4	1K28040	11/29/11 0252	SPS	R-01	
Lead	59.0	0.87	0.42	mg/kg dry	4.95	M4	1K28040	11/29/11 0252	SPS	R-01	
Selenium	ND	1.00	0.4	mg/kg dry	4.95	M4	1K28040	11/29/11 0252	SPS	R-01	

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Southwest Geoscience	Page: Page 6 of 14
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/30/11 17:07

Laboratory ID #: 1111557-04 Sample Description SC-SED 15	<u>Sample Type</u> Grab	<u>Matrix</u> Solid <u>Sample Date/Time</u> 11/18/11 1650					MatrixSample Collected BySolidJason Minter/JohnSample Date/TimeKoehnan/Tommy Kim11/18/11 1650Image: Collected By		<u>Collected By</u> Iter/John Tommy Kim	Custon	ıer
Analyte(s)	Result	SDL	MQL	Units	F*	Inst	Batch	Analysis Date/Time	Anlst	Flag	
Conventional Chemistry	y Parameters, EPA 3	0.00							•		
Sulfate (Total) as SO4	58.0	0.167	1	mg/kg dry	1.00	12	1K22017	11/22/11 1743	ANM		
Conventional Chemistry	y Parameters, SM 25	40G									
% Solids	78	0.040	0.2	%	1.00	W3	1K22018	11/22/11 1548	KTF		
Metals (Total), EPA 305	0B										
Acid Digestion of Sludges/Solids	Completed	N/A	N/A	-	49.02	DB1	1K28040	11/28/11 0821	MDG		
Metals (Total), EPA 601	0B										
Arsenic	12.9	0.40	0.25	mg/kg dry	4.90	M4	1K28040	11/29/11 0300	SPS	R-01	
Cadmium	1.54	0.47	0.221	mg/kg dry	4.90	M4	1K28040	11/29/11 0300	SPS	R-01	
Lead	35.3	0.88	0.42	mg/kg dry	4.90	M4	1K28040	11/29/11 0300	SPS	R-01	
Selenium	ND	1.01	0.4	mg/kg dry	4.90	M4	1K28040	11/29/11 0300	SPS	R-01	

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Southwest Geoscience	Page: Page 7 of 14
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/30/11 17:07

Laboratory ID #: 1111557-05 Sample Description SC-SED 14	<u>Sample Type</u> Grab	<u>Matrix</u> Solid <u>Sample Date/Time</u> 11/18/11 1700					<u>Sample (</u> Jason Mir Koehnan/	<u>Collected By</u> hter/John Tommy Kim	Customer		
Analyte(s)	Result	SDL	MQL	Units	F*	Inst	Batch	Analysis Date/Time	Anlst	Flag	
Conventional Chemistr	y Parameters, EPA 3	00.0	•						•		
Sulfate (Total) as SO4	48.2	0.156	1	mg/kg dry	1.00	12	1K22017	11/22/11 1816	ANM		
Conventional Chemistr	y Parameters, SM 25	40G									
% Solids	83	0.040	0.2	%	1.00	W3	1K22018	11/22/11 1548	KTF		
Metals (Total), EPA 305	0B										
Acid Digestion of Sludges/Solids	Completed	N/A	N/A	-	50.51	DB1	1K28040	11/28/11 0821	MDG		
Metals (Total), EPA 601	0B										
Arsenic	12.7	0.38	0.25	mg/kg dry	5.05	M4	1K28040	11/29/11 0208	SPS	R-01	
Cadmium	0.79	0.45	0.221	mg/kg dry	5.05	M4	1K28040	11/29/11 0208	SPS	R-01, J	
Lead	27.7	0.85	0.42	mg/kg dry	5.05	M4	1K28040	11/29/11 0208	SPS	Q-20, R-01	
Selenium	ND	0.97	0.4	mg/kg dry	5.05	M4	1K28040	11/29/11 0208	SPS	R-01	

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Southwest Geoscience	Page: Page 8 of 14
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/30/11 17:07

Laboratory ID #: 1111557-06 Sample Description SC-SED 13	<u>Sample Type</u> Grab		<u>Matrix</u> Solid <u>Sample Date/Time</u> 11/18/11 1710				<u>Sample Collected By</u> Jason Minter/John Koehnan/Tommy Kim		Customer	
Analyte(s)	Result	SDL	MQL	Units	F*	Inst	Batch	Analysis Date/Time	Anist	Flag
Conventional Chemistr	y Parameters, EPA 3	0.00	•						•	
Sulfate (Total) as SO4	58.3	0.167	1	mg/kg dry	1.00	12	1K22017	11/22/11 1832	ANM	
Conventional Chemistr	y Parameters, SM 25	40G								
% Solids	78	0.040	0.2	%	1.00	W3	1K22018	11/22/11 1548	KTF	
Metals (Total), EPA 305	0B									
Acid Digestion of Sludges/Solids	Completed	N/A	N/A	-	48.54	DB1	1K28040	11/28/11 0821	MDG	
Metals (Total), EPA 601	0B									
Arsenic	31.1	0.39	0.25	mg/kg dry	4.85	M4	1K28040	11/29/11 0316	SPS	R-01
Cadmium	0.84	0.46	0.221	mg/kg dry	4.85	M4	1K28040	11/29/11 0316	SPS	R-01, J
Lead	33.7	0.87	0.42	mg/kg dry	4.85	M4	1K28040	11/29/11 0316	SPS	R-01
Selenium	ND	1.00	0.4	mg/kg dry	4.85	M4	1K28040	11/29/11 0316	SPS	R-01

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Report of Sample Analysis

Southwest Geoscience	Page: Page 9 of 14
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/30/11 17:07

Laboratory ID #: 1111557-07 Sample Description SC-SED 12	<u>Sample Type</u> Grab		<u>Matr</u> Solio <u>Sam</u> 11/1	<u>ix</u> d p <u>le Date/Tir</u> 8/11 1715	<u>Sample (</u> Jason Mir Koehnan/	Custon	ner			
Analyte(s)	Result	SDL	MQL	Units	F*	Inst	Batch	Analysis Date/Time	Anist	Flag
Conventional Chemistr	y Parameters, EPA 3	00.0	•						•	
Sulfate (Total) as SO4	172	0.199	1	mg/kg dry	1.00	12	1K22017	11/22/11 1849	ANM	
Conventional Chemistr	y Parameters, SM 25	40G								
% Solids	65	0.040	0.2	%	1.00	W3	1K22018	11/22/11 1548	KTF	
Metals (Total), EPA 305	0B									
Acid Digestion of Sludges/Solids	Completed	N/A	N/A	-	51.55	DB1	1K28040	11/28/11 0821	MDG	
Metals (Total), EPA 601	0B									
Arsenic	11.3	0.50	0.25	mg/kg dry	5.15	M4	1K28040	11/29/11 0324	SPS	R-01
Cadmium	0.79	0.58	0.221	mg/kg dry	5.15	M4	1K28040	11/29/11 0324	SPS	R-01, J
Lead	56.7	1.11	0.42	mg/kg dry	5.15	M4	1K28040	11/29/11 0324	SPS	R-01
Selenium	ND	1.26	0.4	mg/kg dry	5.15	M4	1K28040	11/29/11 0324	SPS	R-01

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Report of Sample Analysis

Southwest Geoscience	Page:	Page 10 of	14
2351 W. Northwest Hwy, Suite 3321	Project:	SC Sedin	nent Sampling
Dallas, TX 75220	Project #:	011127	78
ATTN: Liz Scaggs	Print Date	/Time:	11/30/11 17:07

Conventional Chemistry Parameters - Quality Control

Analyte(s)	Result	*SDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Blank (1K22017-BLK1)										
Prepared: 11/22/11 12:30 Anal	yzed: 11/22/11 13:02									
Sulfate (Total) as SO4	ND	0.130	mg/kg wet							
Laboratory Control Sample (1) Prepared: 11/22/11 12:30 Anal	K22017-BS1) yzed: 11/22/11 13:19									
Sulfate (Total) as SO4	46.3	0.130	mg/kg wet	50.0		93	90-110			
Laboratory Control Sample Du Prepared: 11/22/11 12:30 Anal	uplicate (1K22017-BSD1 yzed: 11/22/11 16:38)								
Sulfate (Total) as SO4	47.6	0.130	mg/kg wet	50.0		95	90-110	3	20	
Matrix Spike (1K22017-MS1) 1: Prepared: 11/22/11 12:30 Anal	x yzed: 11/22/11 13:52				Source: 1111547-(01				
Sulfate (Total) as SO4	140	0.200	mg/kg dry	76.9	69.8	91	90-110			
Matrix Spike (1K22017-MS2) 1: Prenared: 11/22/11 12:30 Anal	x wzed: 11/22/11 20:44				Source: 1111557-()7				
Sulfate (Total) as SO4	257	0.221	mg/kg dry	85.1	172	100	90-110			
Matrix Spike Duplicate (1K220 Prepared: 11/22/11 12:30 Anal	17-MSD1) 1x yzed: 11/22/11 14:08				Source: 1111547-0	01				
Sulfate (Total) as SO4	141	0.200	mg/kg dry	76.9	69.8	92	90-110	0.6	20	
Matrix Spike Duplicate (1K220 Prepared: 11/22/11 12:30 Anal	17-MSD2) 1x yzed: 11/22/11 21:00				Source: 1111557-0)7				
Sulfate (Total) as SO4	257	0.221	mg/kg dry	85.1	172	99	90-110	0.3	20	
Blank (1K22018-BLK1) Prepared & Analyzed: 11/22/11	15:48									
% Solids	ND	0.040	%							

<u>State Certifications</u> Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Report of Sample Analysis

Southwest Geoscience	Page:	Page 11 of	14
2351 W. Northwest Hwy, Suite 3321	Project:	SC Sedin	nent Sampling
Dallas, TX 75220	Project #:	011127	78
ATTN: Liz Scaggs	Print Date	e/Time:	11/30/11 17:07

Conventional Chemistry Parameters - Quality Control

Analyte(s)	Result	*SDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Duplicate (1K22018-DUP1) Prepared & Analyzed: 11/22/11 15:48				Se	ource: 111149	3-01				
% Solids	1.0	0.040	%		1.1			10	7	Q-26
Duplicate (1K22018-DUP2) Prepared & Analyzed: 11/22/11 15:48				S	ource: 111156	3-01				
% Solids	84	0.040	%		84			0.2	7	

TRRP Rpt 5 - v.2.5-071510

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Report of Sample Analysis

Page: Page 12 of 14
Project: SC Sediment Sampling
Project #: 0111278
Print Date/Time: 11/30/11 17:07

Metals (Total) - Quality Control

		1 +0.51	Lus I	Spike	Source		%REC	RPD	RPD	Flag
Analyte(s)	Result	L_*SDL	Units	Level	Result	/0RLC	Linito			T lag
Blank (1K28040-BLK1) Prepared & Analyzed: 11/28/11 08	:21									
Acid Digestion of Sludges/Solids	Completed	N/A	-							
Arsenic	ND	0.06	mg/kg wet							
Cadmium	ND	0.07	mg/kg wet							
Lead	ND	0.14	mg/kg wet							
Selenium	ND	0.16	mg/kg wet							
Laboratory Control Sample (1K28 Prepared & Analyzed: 11/28/11 08	040-BS1) ::21									
Acid Digestion of Sludges/Solids	Completed	N/A	-				0-0			
Arsenic	21.2	0.06	mg/kg wet	24.5		86	80-120			
Cadmium	22.3	0.07	mg/kg wet	24.5		91	80-120			
Lead	21.6	0.14	mg/kg wet	24.5		88	80-120			
Selenium	43.0	0.16	mg/kg wet	49.0		88	80-120			
Laboratory Control Sample Dupli Prepared & Analyzed: 11/28/11 08	cate (1K28040-B ::21	SD1)								
Acid Digestion of Sludges/Solids	Completed	N/A	-				0-0		0	
Arsenic	22.6	0.06	mg/kg wet	25.3		89	80-120	7	20	
Cadmium	23.6	0.07	mg/kg wet	25.3		93	80-120	6	20	
Lead	22.8	0.14	mg/kg wet	25.3		90	80-120	5	20	
Selenium	45.3	0.16	mg/kg wet	50.5		90	80-120	5	20	
Matrix Spike (1K28040-MS1) Prepared & Analyzed: 11/28/11 08	:21				Source: 1111547-	01				
Acid Digestion of Sludges/Solids	Completed	N/A	-		ND		0-0			
Arsenic	55.3	0.86	mg/kg dry	33.9	12.0	128	75-125			Q-02, R-01
Cadmium	37.8	1.00	mg/kg dry	33.9	0.95	109	75-125			R-01
Lead	92.3	1.90	mg/kg dry	33.9	39.1	157	75-125			Q-02, R-01
Selenium	66.3	2.17	mg/kg dry	67.9	ND	98	75-125			R-01

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Report of Sample Analysis

Page: Page 13 of 14
Project: SC Sediment Sampling
Project #: 0111278
Print Date/Time: 11/30/11 17:07

Metals (Total) - Quality Control

Analyte(s)	Result	*SDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Matrix Spike (1K28040-MS2) Prepared & Analyzed: 11/28/11	08:21			ŝ	Source: 111155	57-05				
Acid Digestion of Sludges/Solids	Completed	N/A	-		ND		0-0			
Arsenic	42.9	0.77	mg/kg dry	30.7	12.7	99	75-125			R-01
Cadmium	31.2	0.91	mg/kg dry	30.7	0.79	99	75-125			R-01
Lead	75.9	1.72	mg/kg dry	30.7	27.7	157	75-125			Q-02, R-01
Selenium	58.0	1.96	mg/kg dry	61.3	ND	95	75-125			R-01
Matrix Spike Duplicate (1K280) Prepared & Analyzed: 11/28/11	40-MSD1) 08:21			ŝ	Source: 111154	17-01				
Acid Digestion of Sludges/Solids	Completed	N/A	-		ND		0-0		0	
Arsenic	42.5	0.90	mg/kg dry	35.7	12.0	85	75-125	26	20	Q-04, R-01
Cadmium	45.8	1.06	mg/kg dry	35.7	0.95	126	75-125	19	20	Q-02, R-01
Lead	67.8	2.00	mg/kg dry	35.7	39.1	81	75-125	31	20	Q-04, R-01
Selenium	72.2	2.28	mg/kg dry	71.4	ND	101	75-125	8	20	R-01
Matrix Spike Duplicate (1K280) Prepared & Analyzed: 11/28/11	40-MSD2) 08:21			S	Source: 111155	57-05				
Acid Digestion of Sludges/Solids	Completed	N/A	-		ND		0-0		0	
Arsenic	40.1	0.74	mg/kg dry	29.5	12.7	93	75-125	7	20	R-01
Cadmium	29.9	0.87	mg/kg dry	29.5	0.79	99	75-125	4	20	R-01
Lead	65.4	1.65	mg/kg dry	29.5	27.7	128	75-125	15	20	Q-02, R-01
Selenium	56.0	1.89	mg/kg dry	58.9	ND	95	75-125	4	20	R-01

State Certifications Arkansas: 88-0647 Oklahoma: 8727

Louisiana: 02007 Kansas: E-10388 Texas: T104704232-11-2

Report of Sample Analysis

Southwest Geoscience	Page: Page 14 of 14
2351 W. Northwest Hwy, Suite 3321	Project: SC Sediment Sampling
Dallas, TX 75220	Project #: 0111278
ATTN: Liz Scaggs	Print Date/Time: 11/30/11 17:07

Notes and Definitions

The results presented in this report were generated using those methods given in 40 CFR Part 136 for Water and Wastewater samples and in SW-846 for RCRA/Solid Waste samples.

J	This value is above the method detection limit but below the reporting limit.
Q-02	The recovery of this analyte in the MS was outside the acceptable range due to interference, large dilutions required for analysis or a combination of these factors. The recovery of this analyte in the LCS(s) was within the acceptable range.
Q-04	The RPD of this analyte between the MS(s) was outside of the acceptable range. The RPD of this same analyte between the LCS(s) was within the acceptable range.
Q-20	The recovery of this analyte in the MS was higher than the acceptable range. This indicates a high bias to the result presented.
Q-26	The RPD between duplicate analyses was outside of the acceptable range. This indicates the result was not as precise as expected.
R-01	The higher reporting limit is due to dilutions required for analysis as a result of a high concentration of target and/or non-target parameters in this sample.
ND	Analyte NOT DETECTED at or above the reporting limit
dry	Sample results reported on a dry weight basis
LCS/LCSD	Laboratory Control Sample/Laboratory Control Sample Duplicate
MS/MSD	Matrix Spike/Matrix Spike Duplicate
RPD	Relative Percent Difference
mg/kg	milligrams per kilogram
mg/l	milligrams per liter
ug/kg	micrograms per kilogram
ug/l	micrograms per liter
exc	Not covered under scope of NELAP accreditation.
F*	Calculated factor rounded to 3 significant figures. Concentration factor when <1.00 and dilution factor when >1.00.
Inst	Instrument Identification
Anlst	Analyst Initials
SDL	Sample Detection Limit
MQL	Method Quantitation Limit
naa	This analysis/parameter is not accreditable under the current NELAP program

Laboratory Data Package Cover Page

This data package for Laboratory Job Number 1111557 consists of:

\checkmark	This signature page, the laboratory review checklist, and the following reportable data:								
	R1 R2 R3	 Field chain-of-custody documentation; Sample identification cross-reference; Test reports (analytical data sheets) for each environmental sample that includes: a) Items consistent with NELAC 5.13 or ISO/IEC 17025 Section 5.10 b) dilution factors, c) preparation methods, d) cleanup methods, and e) if required for the project, tentatively identified compounds (TICs). 							
\checkmark	R4	Surrogate recovery data including: a) Calculated recovery (%R), and b) The laboratory's surrogate QC limits.							
✓✓	R5 R6	 Test reports/summary forms for blank samples; Test reports/summary forms for laboratory control samples (LCSs) including: a) LCS spiking amounts, b) Calculated %R for each analyte, and c) The laboratory's LCS QC limits. 							
	R7	 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: a) Samples associated with the MS/MSD clearly identified, b) MS/MSD spiking amounts, c) Concentration of each MS/MSD analyte measured in the parent and spiked samples, d) Calculated %Rs and relative percent differences (RPDs), and e) The laboratory's MS/MSD QC limits 							
	R8	 Laboratory analytical duplicate (if applicable) recovery and precision: a) the amount of analyte measured in the duplicate, b) the calculated RPD, and c) the laboratory's QC limits for analytical duplicates. 							
\checkmark	R9 R10	List of method quantitation limits (MQLs) for each analyte for each method and matrix; Other problems or anomalies.							
\checkmark	The E	Exception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.							

Release Statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Check, if applicable: [] This laboratory is an in-house laboratory controlled by the person responding to rule. The official signing the cover page of the rule-required report (for example, the APAR) in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Genball X. Brown President

11/30/11

Kendall K. Brown Name (Printed)

Signature

Official Title (Printed)

. Date

A ¹ NR ⁴ ER# ⁵
A ³ NR ⁴ ER# ⁵
A ¹ NR ⁴ ER# ⁵
·
•
•
E001
E001 E002
E001 E002
E001 E002
E001 E002
E001 E002 E002
E001 E002 E002
E001 E002 E002 E003
E001 E002
E001 E002 E002
E001 E002
E001 E002
E001 E002
E001 E002 E002
E001 E002 E002
E001 E002 E002

Laboratory	/ Review	Checklist:	Re	portable	Data
					_

5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Labo	rato	ory Name: ERMJ Environmental Laboratories LRC Date: 11/30/11							
Proje	ect N	ame: SC Sediment Sampling	Laboratory Job	1111557					
Revi	ewer	Name: Leslie Underwood Prep Batch Number(s): 1K22017,1K22018,1K28040							
# ¹	A ²	Description Yes No NA ³ NR ⁴ ER# ⁵							
S1	OI	Initial calibration (ICAL)							
		Were response factors and/or relative response factors for each	analyte within QC limits?		Х				
		Were percent RSDs or correlation coefficient criteria met?			Х				
		Was the number of standards recommended in the method used	d for all analytes?		Х				
		Were all points generated between the lowest and highest stand	lard used to calculate the curve?		Х				
		Are ICAL data available for all instruments used?			Х				
		Has the initial calibration curve been verified using an appropriation	te second source standard?		Х				
S2	OI	Initial and continuing calibration verification (ICCV and CCV) a	nd continuing calibration			-			
		Was the CCV analyzed at the method-required frequency?			Х				
		Were percent differences for each analyte within the method-rec	quired QC limits?		Х				
		Was the ICAL curve verified for each analyte?			Х				
		Was the absolute value of the analyte concentration in the inorganic CCB < MDL? X							
S3	0	Mass spectral tuning:					r		
		Was the appropriate compound for the method used for tuning?					Х		
		Were ion abundance data within the method-required QC limits?	?				Х		
S4	0	Internal standards (IS):							
		Were IS area counts and retention times within the method-requ	ired QC limits?				Х		
S5	OI	Raw data (NELAC section 1 appendix A glossary, and section	5.12 or ISO/IEC 17025 section						
		Were the raw data (for example, chromatograms, spectral data)	reviewed by an analyst?		Х				
		Were data associated with manual integrations flagged on the raw data?							
S6	0	Dual column confirmation							
	-	Did dual column confirmation results meet the method-required	QC?				X		
S7	0	Tentatively identified compounds (TICs):						ı ı	
		If IICs were requested, were the mass spectra and IIC data su	bject to appropriate checks?				Х		
58		Interference Check Sample (ICS) results:			V	1			
		Were percent recoveries within method QC limits?			X				_
59	-	Serial dilutions, post digestion spikes, and method of standard	additions	n	V			г т	
640	0	Method detection limit (MDL) studies	QC limits specified in the method	<i>!</i>	^				
310	01	Was a MDL study performed for each reported analyte?			Y	[<u>г т</u>	
		Is the MDL either adjusted or supported by the analysis of DCSs	~?		×				
\$11		Proficiency test reports:	5 :		^				
011	01	Was the laboratory's performance acceptable on the applicable	proficiency tests or evaluation stud	ies?	X	1		<u> </u>	
S12	OL	Standards documentation			~				
		Are all standards used in the analyses NIST-traceable or obtain	ed from other appropriate sources?)	х	1			
S13	OI	Compound/analyte identification procedures					L	<u> </u>	
		Are the procedures for compound/analyte identification docume	nted?		Х				
S14	OI	Demonstration of analyst competency (DOC)							
		Was DOC conducted consistent with NELAC Chapter 5C or ISC	0/IEC 4?		Х				
		Is documentation of the analyst's competency up-to-date and or	n file?		Х				
S15	OI	Verification/validation documentation for methods (NELAC Ch	ap 5 or ISO/IEC 17025 Section 5)						
		Are all the methods used to generate the data documented, veri	fied, and validated, where applicab	le?	Х				
S16	OI	Laboratory standard operating procedures (SOPs):						· · · ·	
		Are laboratory SOPs current and on file for each method perform	ned?		Х				
1 14			TODD : 1 (()) () (() ()						

1. Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

2. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);

3. NA = Not applicable;

4. NR = Not reviewed;

5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laborato	rv Namo:		L BC Date:	11/30/11
Broject N	amo:	SC Sediment Sampling		1111557
Project N	Nama:	Leslie Underwood	Bron Batch Number(s):	1K22017 1K22018 1K28040
FD#1	Descriptio	n	Fiep Batch Number(5).	1122011,1122010,1120040
EN#	Motrix Spil	a Recovery for Americ (128%) was outside accord	tanaa limita (75, 125) in 11/28040 N	AS1 for As Total ICB 6010B
Loon	- The reco	overy of this analyte in the MS was outside the acception of the factors. The recovery of this analyte in the factors.	eptable range due to interference, I the LCS(s) was within the acceptal	large dilutions required for analysis or a ble range.
	Matrix Spil - The reco combinatio	ke Recovery for Lead (157%) was outside acceptar overy of this analyte in the MS was outside the acce on of these factors. The recovery of this analyte in the	nce limits (75-125) in 1K28040-MS eptable range due to interference, l the LCS(s) was within the acceptal	1for Pb Total ICP 6010B large dilutions required for analysis or a ble range.
	Matrix Spil - The reco combinatio batch. The	the Recovery for Lead (157%) was outside acceptar overy of this analyte in the MS was outside the acce on of these factors. This indicates a high bias to the e recovery of this analyte in the LCS(s) was within t	nce limits (75-125) in 1K28040-MS eptable range due to interference, l e result presented for the source sa the acceptable range.	2 for Pb Total ICP 6010B large dilutions required for analysis or a ample (1111557-05) reported from this
	Matrix Spil - The reco combinatio	Re Recovery for Cadmium (126%) was outside acce overy of this analyte in the MS was outside the acce on of these factors. The recovery of this analyte in	eptance limits (75-125) in 1K28040 eptable range due to interference, I the LCS(s) was within the acceptal	0-MSD1 for Cd Total ICP 6010B large dilutions required for analysis or a ble range.
	Matrix Spil - The reco combinatio batch. The	ke Recovery for Lead (128%) was outside acceptar overy of this analyte in the MS was outside the acce on of these factors. This indicates a high bias to the e recovery of this analyte in the LCS(s) was within t	nce limits (75-125) in 1K28040-MS eptable range due to interference, l e result presented for the source sa the acceptable range.	D2 for Pb Total ICP 6010B large dilutions required for analysis or a ample (1111557-05) reported from this
E002	Matrix Spil - The RPI was within	the Duplicate RPD for Arsenic (26%) was above the of this analyte between the MS(s) was outside of the acceptable range.	acceptance limit (20) in 1K28040- the acceptable range. The RPD o	MSD1 for As Total ICP 6010B f this same analyte between the LCS(s)
	Matrix Spil - The RPE was within	xe Duplicate RPD for Lead (31%) was above the ac 0 of this analyte between the MS(s) was outside of the acceptable range.	cceptance limit (20) in 1K28040-M8 the acceptable range. The RPD o	SD1 for Pb Total ICP 6010B f this same analyte between the LCS(s)
E003	Duplicate I	RPD for % Solids (10%) was above the acceptance) between duplicate analyses was outside of the ac	e limit (7) in 1K22018-DUP1 for Dry cceptable range. This indicates the	/ Weight 2540G e result was not as precise as expected.

Laboratory	Review	Checklist:	Exception	Reports

1. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked on the LRC)

								-			-					RECORD
Ú	JO L	uth	\$) G	St	Labora	tory:	J.	Into	ſ	~	ANALYSIS 7EQUESTEI	// c		Lab use only Due Date:	
Enviro	G E	O S C & Hydroge	: I E	Sic cons	C E sultants	Addres	S:								Temp. of coole	S S
Office L	ocation	Day	4 T	XL'S	1	Contac	ţ.	-							<u>16-01</u>	4 5
						Phone:	97	2-7%	7-110	13		P			Page	-of
Project	Manage	er U	0	5cAGC	5.5	PO/SO	, #:			+	+	\sum	/	/ /		
Sampler's	s Name					Samplei	r's Signati	nre 2	Sol	32hr	N.	10/20				
TASON	MIMER	e/tomn	u k	CIM ?	DHN 10	ICHN E.	2 1 1 2 1	$\left(\right)$	X		- to	122	/	<u> </u>		
Proj. No.	112.	78	Proje	set Name SC	SE	NMR	WT S	AMP		Por of the	hitainers U					
Matrix	Date	Time	ဂ၀ေငေ	مه م م	lentifying Mé	arks of Sar	nple(s)	Depth Depth bn∃	Q Q Depth	AG	250 P/O	S SA			ab Sample ID (Lab U	se Only)
5	18/11	1630		8	SC-SE.	D 18		0	en en		-	D &			10.(25/1)	
5 #	11/11	1635		Ŷ	S C-56	61 di		0	.0		~	20			 10-12211	
5 1/	111 11	1645		δ	SC-SE	11 di		0			~	0 10			20.12211	
S	1/19/	1650		λ	SUSE	70 15	<u> </u>	0	i,		$\langle $	X N			11557.34	
S 	119/1	1700		8	9C-SE	F1 (F	7	0	l.		<u> </u>	V Ý			 So-CSSII	
~' 5	1/11/11	1710		3 2	3C-SE	P 13		0 (, X 	d D			 90.(251	
~ "/	118/1	1715		R	50-52	21 de		9 0	0		× 	X			 6~(2)11	
1	Por Buttle	tı .						-							-	
	•	c .														
Turnarpu	pd time		nal	0 25%	Rush	🗆 50% Ru	sh 🛛	00% Ru:	sh							
Relinduik	hed by (S	Ann			te:////////////////////////////////////	1400	Reelve Letter		gmature)	A Carl	T Date:	ul IIイン	NOTES:			
Refinquis	theld by (S	Signature)		Dai	te: 	Time:	Receive	d by: (Si	gnature)		Date:	Time:				
Relinquis	hed by (S	signature)	•	Dai	te:	Time:	Receive	d by: (Si	gnature)		Date:	Time:				
Relinquis	hed by (S	Signature)		Dai		Time:	Receive	d by: (Si	gnature)		Date:	Time:				
Matrix	MM	- Wastewate	er	- ×	Water	S - Soil	SD - Solid		iquid 4	∖ - Air Baç	0-0	harcoal tube	SL - sludge	0 - Oil		
Container	AUX .	- 40 mi viai		AG	a - Amber / t	Dr Glass 1	Liter	250	ml - Glass	wide mot	- D/A utr	Plastic or other				

SOUTHWEST GEOSCIENCE • 2351 W. Northwest Hwy., Suite 3321 • Dallas, Texas 75220 • Office: 214-350-5469 • Fax 214-350-2914

ロービー 学校教育 たんか かい アンジャンジャン いいてい 精錬 精錬化 かいかったい アンビー 特殊な 強い かかれた 読い おい いいい

Lab Number(s): _

111557

ERM)

Sample Preservation Documentation*

On Ice (Circle One) YES OR NO (check if on Dry Ice_____)

Parameters	Conta #	ainers Size	Required Preservation	Sample Container	Circle pH Note any discrepancy
Metals			pH < 2	Glass or Plastic	pH < 2
Dissolved Metals			Unpreserved prior to being filtered, Cool**	Glass or Plastic	
Hexavalent Chromium			CWA - pH 9.3-9.7, Cool; RCRA - Cool	Glass or Plastic	Checked At Analysis
Semivolatiles, Pesticides, PCBs, Herbicides			Cool	Glass only with Teflon lid	Chlorine Dyes Dno
VOA (BTEX, MTBE, 624, 8260, TPH-GRO)			Cool, pH < 2 Zero Head Space	40 ml VOA vial	DO NOT OPEN
VOA (TPH-1005)			Cool, Zero Head Space Please check if collected in pre-weighed vials	40 ml VOA vial	DO NOT OPEN
Phos., NO ₃ /NO ₂ , NH ₃ N, COD, TKN,TOC			Cool, pH < 2	Glass or Plastic	pH < 2
TDS, BOD, CBOD, Cond, pH, TSS, F, SO ₄ , Cl, Alk, Sulfite			Cool	Glass or Plastic, Plastic only if F	
Phenols, TPH-DRO			Cool, pH < 2	Glass only Teflon lid Foil lid	pH < 2
Oil & Grease, TPH (by 1664a)			Cool, pH < 2	Glass only Teflon lid Foil lid	DO NOT Check pH
Cyanide			Cool, pH >12	Glass or Plastic	pH > 12 Chlorine ⊡yes ⊡no Sulfide ⊡yes ⊡no ⊡na
Sulfide			Cool, pH > 9	Glass or Plastic	pH > 9
Bacteria			Cool	Plastic Sterile Cup	
Soil, Sludge, Solid, Oil, Liquid	7	9n	Cool Note: please check if collected in pre-weighed vials	9 hr	

*This form is used to document sample preservation. Circle parameter requested. Fill in number and size of containers received. Check pH (adjust if needed) and note if different from what is required and make a notation of any samples not received on ice. Note any incorrect sample containers or preservation on chain-of-custody. **Cool means cooled to $\leq 6^{\circ}$ C but not frozen.

Date

Preservation Checked By

1000.0-3.2

COMMENTS:

kdy 7/10/08 Q:\Form Masters\1000.0-3.2 Sample Preservation Form

Time